31267-1 (675613)

Файл №675613 31267-1 (Решение смешанной задачи для уравнения гиперболического типа методом сеток)31267-1 (675613)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Решение смешанной задачи для уравнения гиперболического типа методом сеток

Рассмотрим смешанную задачу для волнового уравнения ( 2 u/ t2) = c 2 * ( 2u/ x2) (1). Задача состоит в отыскании функции u(x,t) удовлетворяющей данному уравнению при 0 < x < a, 0 < t T, начальным условиям u(x,0) = f(x), u(x,0)/ t = g(x) , 0 x a и нулевыми краевыми условиями u(0,t) = u(1,t)=0.

Так как замена переменных t ct приводит уравнение (1) к виду ( 2 u/ t2) = ( 2u/ x2), то в дальнейшем будем считать с = 1.

Для построения разностной схемы решения задачи строим в области D = {(x,t) | 0 x a, 0 t T } сетку xi = ih, i=0,1 ... n , a = h * n, tj = j* , j = 0,1 ... , m, m = T и аппроксимируем уравнение (1) в каждом внутреннем узле сетки на шаблоне типа “крест”.

t

T

j+1

j

j-1

0 i-1 i i+1



Используя для аппроксимации частных производных центральные разностные производные, получаем следующую разностную аппроксимацию уравнения (1) .

ui,j+1 - 2uij + ui,j-1 ui+1,,j - 2uij + ui-1, j



2 h2



(4)

Здесь uij - приближенное значение функции u(x,t) в узле (xi,tj).

Полагая, что = / h , получаем трехслойную разностную схему

ui,j+1 = 2(1- 2 )ui,j + 2 (ui+1,j- ui-1,j) - ui,j-1 , i = 1,2 ... n. (5)

Для простоты в данной лабораторной работе заданы нулевые граничные условия, т.е. 1(t) 0, 2(t) 0. Значит, в схеме (5) u0,j= 0, unj=0 для всех j. Схема (5) называется трехслойной на трех временных слоях с номерами j-1, j , j+1. Схема (5) явная, т.е. позволяет в явном виде выразить ui,j через значения u с предыдущих двух слоев.

Численное решение задачи состоит в вычислении приближенных значений ui,j решения u(x,t) в узлах (xi,tj) при i =1, ... n, j=1,2, ... ,m . Алгоритм решения основан на том, что решение на каждом следующем слое ( j = 2,3,4, ... n) можно получить пересчетом решений с двух предыдущих слоев ( j=0,1,2, ... , n-1) по формуле (5). На нулевом временном слое (j=0) решение известно из начального условия ui0 = f(xi).

Для вычисления решения на первом слое (j=1) в данной лабораторной работе принят простейший способ, состоящий в том, что если положить u(x,0)/ t ( u( x, ) - u(x,0) )/ (6) , то ui1=ui0+ + (xi), i=1,2, ... n. Теперь для вычисления решений на следующих слоях можно применять формулу (5). Решение на каждом следующем слое получается пересчетом решений с двух предыдущих слоев по формуле (5).

Описанная выше схема аппроксимирует задачу с точностью до О( +h2). Невысокий порядок аппроксимации по объясняется использованием слишком грубой аппроксимации для производной по е в формуле (6).

Схема устойчива, если выполнено условие Куранта < h. Это означает, что малые погрешности, возникающие, например, при вычислении решения на первом слое, не будут неограниченно возрастать при переходе к каждому новому временному слою. При выполнении условий Куранта схема обладает равномерной сходимостью, т.е. при h 0 решение разностной задачи равномерно стремится к регшению исходной смешанной задачи.

Недостаток схемы в том, что как только выбраная величина шага сетки h в направлении x , появляется ограничение на величину шага по переменной t . Если необходимо произвести вычисление для большого значения величины T , то может потребоваться большое количество шагов по переменной t. Указанный гнедостаток характерен для всех явных разностных схем.

Для оценки погрешности решения обычно прибегают к методам сгущения сетки.

Для решения смешанной задачи для волнового уравнения по явной разностной схеме (5) предназначена часть программы, обозначенная Subroutine GIP3 Begn ... End . Данная подпрограмма вычисляет решение на каждом слое по значениям решения с двух предыдущих слоев.

Входные параметры :

hx - шаг сетки h по переменной х;

ht - шаг сетки по переменной t;

k - количество узлов сетки по x, a = hn;

u1 - массив из k действительных чисел, содержащий значение решений на ( j - 1 ) временном слое, j = 1, 2, ... ;

u2 - массив из n действительных чисел, содержащий значение решений на j - м временном слое, j = 1, 2, ... ;

u3 - рабочий массив из k действительных чисел.

Выходные параметры :

u1 - массив из n действительных чисел, содержащий значение решения из j - м временном слое, j = 1, 2, ... ;

u2 - массив из n действительных чисел, содержащий значение решения из ( j +1) - м временном слое, j = 1, 2, ... .

К части программы, обозначенной как Subroutine GIP3 Begin ... End происходит циклическое обращение, пеоред первым обращением к программе элементам массива u2 присваиваются начальные значения, а элементам массива u1 - значения на решения на первом слое, вычислинные по формулам (6). При выходе из подпрограммы GIP3 в массиве u2 находится значение решения на новом временном слое, а в массиве u1 - значение решения на предыдущем слое.

Порядок работы программы:

1) описание массивов u1, u2, u3;

2) присвоение фактических значений параметрам n, hx, ht, облюдая условие Куранта;

3) присвоение начального значения решения элементам массива и вычисленное по формулам (6) значение решения на первом слое;

4) обращение к GIP3 в цикле k-1 раз, если требуется найти решение на k-м слое ( k 2 ).

Пример:


1

0.5 0.5


Р ешить задачу о колебании струны единичной длины с закрепленными концами, начальное положение которой изображено на рисунке. Начальные скорости равны нулю. Вычисления выполнить с шагом h по x, равным 0.1, с шагом по t, равным 0.05, провести вычисления для 16 временных слоев с печатью результатов на каждом слое. Таким образом, задача имеет вид

( 2 u/ t2) = ( 2 u/ x 2) , x [0,1] , t[0,T] ,

u (x,0)=f (x) , x[0,a], u(x,0)/ t=g(x), x[0,a],

u ( 0 , t ) = 0, u ( 1 , t ) = 0, t [ 0 , 0.8 ],

2x , x [0,0.5] ,

f(x) = g( x ) = 0

2 - 2x , x [0.5,1] ,

Строим сетку из 11 узлов по x и выполняем вычисления для 16 слоев по t. Программа, и результаты вычисления приведены далее.

Приложение 1

(пример выполнения лабораторной работы)

Программа решения смешанной задачи для уравнения гиперболического типа методом сеток.

Program Laboratornaya_rabota_43;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

If x <= 0.5 then

f := 2 * x

else

f := 2 - 2 * x;

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 2');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;

t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.

Приложение 3

( выполнения лабораторной работы. Вариант 11)

Program Laboratornaya_rabota_43_variant_11;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

f := x * ( x * x - 1 );

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;

t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.

(выполнения лабораторной работы. Вариант 20)

Program Laboratornaya_rabota_43_variant_20;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

f := 10 * x * ( x * x * x - 1 );

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

Характеристики

Тип файла
Документ
Размер
70,6 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7039
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее