18750-1 (675575), страница 3

Файл №675575 18750-1 (Бернулли) 3 страница18750-1 (675575) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Вторая лекция посвящена вычислению площадей. И в этом вопросе И. Бернулли развивал идеи Лейбница и писал: « Площади рассматривают как разложенные на части, каждую из которых можно считать дифференциалом площади. Если имеют интеграл этого дифференциала, т. е. сумму этих частей, то отсюда будет известна и искомая квадратура».

После обсуждения различных способов разбиения фигуры И. Бернулли делает заключение: когда частичные площадки ограничены ординатами и кривой, дифференциал каждой из них будет уdх. Если кривая задается, то у выражается через х вполне определенно, и уdх будет «полностью выражаться через х». Он приводит пример: дана парабола у2=ах; дифференциал площади будет √ах dх, его интеграл 2/3х√ах, или 2/3xу. С необычайной простотой И. Бернулли нашел результат, считающийся важнейшим достижением геометрии древних, состоящий в том, что площадь сегмента параболы равна 2/3 площади соответствующего прямоугольника ху.

Содержание следующих лекций весьма разнообразно: квадратуры площадей, кривых, «обратные задачи», соприкасающиеся кривые и эволюты, каустики; завершают книгу пять лекций, посвященных решению физико-механических задач, в том числе задачи и цепной линии — одной из первых задач механики нити. Поражает в тех и других лекциях, кроме содержания, высочайшее методическое мастерство. Все в них все как у опытного лектора, хотя ему было всего 24 года. И лекций по анализу бесконечно малых до него не читал никто.

Мало займет места изложение широко известного правила Лопиталя, но следует его выделить среди общего рассмотрения творчества И. Бернулли. В письме 22 июля 1694 г. И. Бернулли ответил Лопиталю на вопрос о том, как следует поступать, когда необходимо найти значение неопределенности вида О/О. И сообщил геометрическое доказательство высказанному правилу. Оно вошло в учебник Лопиталя «Анализ бесконечно малых».

Лопиталь формулирует задачу так: «.Пусть величина ординаты у кривой АМD (АР=х, РМ=у, АВ=а) выражается дробью, числитель и знаменатель которой обращаются в нуль при х=а, т. е. когда точка Р совпадает с данной точкой В. Спрашивается, какой должна быть при атом величина ординаты ВD».

Решение задачи выглядит так. На общей «оси» строятся кривые АNВ и СОВ, причем ордината РN входит в числитель, а РО — в знаменатель дроби для всех РМ, так что РМ=АМ•РN/РО.

О бе кривые пересекаются в точке В, поскольку, по предположению,

величины РN и РО обращаются в нуль, когда точка Р совпадает с В. Затем вводится ордината bd, близкая к ВD и пересекающая кривые в точках f и g. Для нее будет Bd=AB*bf/bg, что не отличается от ВD в силу одного из основных допущений, выдвинутых автором, о том, что если имеются две величины, отличающиеся друг от друга на бесконечно малую, то можно брать одну из них вместо другой. Следовательно, необходимо найти отношение bg к bf.

Когда АР обращается в АВ, обе ординаты РN и РО обращаются в нуль, «а когда АР обращается в Аb, ординаты обращаются в bf и bg». Значит, ординаты bf и bg являются дифференциалами кривых АNВ и СОВ в точках В и b. Поэтому для нахождения искомого значения bd иди ВD нужно дифференциал числителя разделить на дифференциал знаменателя, положив х=а=Аb или АВ, «что и требовалось найти»,— заключает Лопиталь.

В следующем параграфе правило применяется к нахождению предельного значения

y = (√2a3x – x4 - a√a2x)/(a - √ax3) при х=а.

Лопиталь пишет: нужно дифференциал числителя разделить на дифференциал знаменателя, положив х=а. Получим число 16а/9 «для искомой величины ВD».

В августе 1704 г., вскоре после смерти Лопиталя, И. Бернулли выступил с первым печатным заявлением, в котором предъявил претензии на описанные в «Анализе» методы. Это была заметка «Усовершенствование моего опубликованного в “Analyse des infiniment petits” § 163 метода для определения значения дроби, числитель и знаменатель которой иногда исчезают». Здесь И. Бернулли рассказал, что правило он сообщил в письме Лопиталю лет 10 назад, а также решил пример, помещенный в § 164, который французские математики и Лопиталь решить не могли. В той же заметке И. Бернулли, «движимый любовью к истине», отметил, что иногда однократное применение правила к цели не приводит, получается опять неопределенность вида 0/0, поэтому его приходится применять еще один или несколько раз.

Одновременно с развитием дифференциального и интегрального исчислений шла разработка методов решения дифференциальных уравнений. В интегрировании уравнений первого порядка были достигнуты значительные успехи. В «Математических лекциях о методе интегралов и о других вопросах, написанных для маркиза Лопиталя» решено однородное уравнение dy/dx=f(y/x) подстановкой у=хt. Там же изложен метод приведения к однородному уравнения dy/dx=f((ax+by+c/(a1x + b1y + c1)) подстановками x = ξ + h, у = η +h; при этом не упомянут случай ab1-a1b=0. В «Лекциях» И. Бернулли применил интегрирующий множитель к уравнению ахdу—уdх=0. Он умножил члены уравнения на уa-1/x2 и получил d(ya/x;)=0, откуда уa=bх. Непосредственное разделение переменных в этом уравнении И. Бернулли не выполнил, так как считал, что в соответствии с формулой ∫хndх=хп+1/(n+1) будет ∫dx/x=∞. (Как известно, впоследствии он выражал этот интеграл через ln x.)

В письме Лейбницу 4 сентября 1696 г. И. Бернулли показал, что «уравнение Бернулли» dy/dx=р(х)у+q(х)уn сводится заменой у1-n=z к линейному. Из письма Лейбницу в том же году следует, что И. Бернулли проинтегрировал уравнение у=хφ(dу/dх)+ψ(dу/dх), называемое теперь уравнением Лагранжа. Около 1700 г. И. Бернулли применил интегрирующий множитель xk для последовательного понижения порядка уравнения Эйлера

а0хndпу/dхn+а1хп-1dп-1у/dхn-1+ … +аn-1хdу/dх+аny=0.

Помимо этого И. Бернулли занимался еще уравнением Риккати и задачей о колебании струны.

Статья И. Бернулли «Общий способ построения всех дифференциальных уравнений первого порядка» содержит идею метода изоклин, применяемого при графическом решении уравнений первого порядка. Существо вопроса состоит в следующем. Общему решению у=f(x; С) дифференциального уравнения первого порядка у'=f(х; у) на плоскости соответствует семейство интегральных кривых. Само уравнение определяет в каждой точке плоскости значение у', т. е. угловой коэффициент касательной к интегральной кривой в этой точке. Если всюду на плоскости задается значение некоторой величины, то говорят о поле этой величины. Значит, дифференциальное уравнение задает поле уравнений, а задача нахождения общего решения уравнения состоит в отыскании кривых, для которых направления касательных совпадают с направлениями поля.

III

Третий гениальный представитель рода Бернулли, Даниил, занимает среди Бернулли и в науке особое место. Особенность эта объясняется, во-первых, разносторонностью его научных интересов и значительностью полученных им результатов практически во всех областях точного естествознания своего времени, во-вторых, прикладной направленностью исследований. В книгах, в какой-либо мере связанных с историей науки, Даниила Бернулли называют по-разному: физиологом, астрономом, физиком, математиком, механиком, гидродинамиком. И не без основания: Д. Бернулли вместе с Л. Эйлером, И. Бернулли, Ж. Д’Аламбером, Ж. Лагранжем и другими выдающимися математиками и механиками XVIII в. создавал основы классической науки.

В очерке о роде Бернулли говорилось, что в 1723 г. Д. Бернулли отправился в Венецию для занятия медициной под руководством итальянского врача П. А. Микелотти. За два года до приезда Д. Бернулли в Венеции была опубликована «физико-механико-медицинская» диссертация Микелотти «О разделении жидкостей в теле животного», в которой рассматривались вопросы гидродинамики живых организмов. Она вышла в одном переплете со вторым изданием медицинской диссертации И. Бернулли «О движении мускулов», что свидетельствовало о научном авторитете Бернулли среди итальянских ученых и благоприятствовало деятельности Д, Бернулли в Венеции.

С помощью «одного знатного венецианца» Д. Бернулли в 1724 г. издал «Математические упражнения» («Даниила Бернулли из Базеля, сына Иоганна, некоторые математические упражнения»), направленные в защиту идей отца и дяди от нападок некоторых итальянских ученых. Книга представляет как бы обзор научной деятельности автора за предыдущие годы и содержит многие идеи, развитые им впоследствии. Через год некоторые результаты были опубликованы в «Acta Eruditorium» и стали достоянием более широкого круга ученых.

«Математические упражнения» состоят из четырех разделов: три посвящены математике, один (второй) — приложениям математики к гидравлике и медицине. В части книги, связанной с математикой, Бернулли полимезирует с итальянскими математиками (Д. Ризетти, Д. Риккати и др.) по разрабатываемой в то время чистой математике. Здесь содержится много ссылок на работы, помещенные в разное время в «Acta Eruditorium»; это служит свидетельством того, что автор был в курсе новейших открытий. Наиболее значима часть книги, посвященная исследованию дифференциального уравнения Риккати.

Развитие математики в первой половине XVIII в. характеризовалось тем, что наряду с детальным рассмотрением различных классов функций наблюдалось дальнейшее исследование дифференциальных уравнений и применение их к задачам механики, дифференциальной геометрии, вариационного исчисления. Уравнения интегрировались как в конечном виде, так и с помощью рядов.

Ко времени опубликования «Математических упражнений» в работах Лейбница, Я. и И. Бернулли были найдены способы интегрирования однородных и линейных уравнений первого порядка, а также уравнений Я. Бернулли.

y'=f(х; у), в котором правая часть является функцией отношения у/х. В 1693 г. Лейбниц нашел метод сведения таких уравнений к уравнениям с разделяющимися переменными подстановкой у=их.

Линейное уравнение первого порядка имеет вид у'+Р(х)у=Q(х).

Метод решения таких уравнений, когда функция у отыскивается в виде произведения двух новых функций (у=иу), был разработан примерно в то же время и также Лейбницем. Уравнение вида

y'+Р(х)у=Q(х)уп предложил Я. Бернулли. Оно в 1696—1697 гг. было решено тем же методом, что и линейное, Лейбницем, Я. и И. Бернулли; кроме того, Лейбниц и И. Бернулли показали, что оно сводится к линейному подстановкой y1-n=z

К некоторым уравнениям применялся также интегрирующий множитель. Я. Бернулли предложил прием понижения порядка к уравнению второго порядка, не содержащему явно одной из переменных, заменой y'=p. Работа Я. Бернулли увидела свет позднее, после того как Риккати в 1715 г. опубликовал свое исследование о том же методе.

В 1694 г. в «Асtа Eruditorium» И. Бернулли поместил небольшую статью, в которой упоминалось уравнение тина Риккати. Он писал: «Я еще не выяснил, можно ли разрешить дифференциальное уравнение х2dх + у2dх = d2у». После этой публикации уравнением y’=у2+х2

заинтересовался Я. Бернулли, о чем свидетельствуют его письма Лейбницу в 1697—1704 гг. «Я бы хотел далее от тебя узнать, пытался ли ты исследовать dу=у2dх+х2dх,— писал Я. Бернулли Лейбницу 27 января 1697г.— Я делал множество попыток, но решение этой задачи постоянно ускользало от меня». «Кстати, я вспоминаю другое уравнение dу=у2dх+х2dх,— писал он Лейбницу 15 ноября 1702 г.,— в котором мне не удалось разделить переменные так, чтобы уравнение осталось просто дифференциальным; но я разделил их сведением к следующему дифференциальному уравнению: d2у:у=-х2dx2».

Хотя Я. Бернулли не удалось решить уравнение в конечном виде, интерес к нему у математиков утих. Лишь в 1724 г. граф Джакопо Риккати в Дополнении VIII к «Асtа Eruditorium» поставил задачу: для уравнения у'=ахп+bу2 (а и b — постоянные) найти значения п, при которых оно допускает разделение переменных. Ею занялись Иоганн I, Николай I, Николай II и Даниил Бернулли, но, кроме Даниила, существенных результатов никто не получил.

Д. Риккати свое решение в упомянутом дополнении выразил в виде анаграммы.

В том же выпуске «Асta Eruditorum» была помещена заметка Д. Бернулли, в которой он написал, что уравнение ахndх+ииdх=bdи считается неразрешимым.

Бернулли приступил к исследованию уравнения и вскоре опубликовал свои результаты в «Математических упражнениях». Он установил, что уравнение Риккати допускает интегрирование в конечном виде в случаях n= -4k/(2k±1) (k—целое число).

Случай п=—2 рассмотрел Эйлер. В 1841 г. Лиувилль доказал, что в случаях, отличных от указанных Д. Бернулли и Эйлером, решение уравнения Риккати не сводится к квадратурам и не может быть выражено с помощью конечного числа элементарных функций. Уравнение

у'+а(х)y2+b(x)y+c(x)=0

теперь называют обобщенным уравнением Риккати. Его исследовал Эйлер и установил, что если известно одно частное решение у1(х) уравнения, то подстановка y=y1 (х)+1/и{х) приводит его к линейному. Если же известны два частных решения y1(x) и у2(x), то общий интеграл уравнения находится одной квадратурой.

Интерес к уравнению Риккати объясняется тем, что оно встречается при решении некоторых задач механики; кроме того, к нему можно свести любое линейное уравнение второго порядка.

Интересы Д. Бернулли были разнообразны. И вскоре он заинтересовался древней неразрешимой задачей квадратуры круга просуществовавшей многие века, будоража умы математиков всех времен. Гиппократ Хиосский (V в. до н. э.) пытался справиться с квадратурой круга при помощи квадрируемых фигур, ограниченных дугами двух окружностей, названных гиппократовыми луночками. Такую луночку можно, например, построить следующим образом: возьмем четверть круга радиуса r и на хорде АС, соединяющей концы радиусов ОА и ОС, опишем как на диаметре внешнюю по отношению к четверти круга полуокружность.

Тогда АС=r√2 и площадь четверти большего круга будет такой же, как площадь меньшего полукруга, т. е. πr2/4.

Пусть S—площадь луночки, S1, S2, S3, S4, —площади соответственно меньшего полукруга, сегмента АС, четверти большего круга, треугольника ОАС. Найдем

S=S1-S2, S2=S3—S4,

поэтому

S= πr2/4- (πr2/4-S4) =S4.

Итак, S=r2/2. Это значит — луночка квадрируема.

Гиппократ получил три квадрируемые луночки. Д. Бернулли в «Математических упражнениях» указал условие, которому должны удовлетворять алгебраически квадрируемые луночки, и привел уравнение, дающее четвертую квадрируемую луночку.

Однако луночки Гиппократа задачу о квадратуре круга вперед к решению не продвинули: в 30—40-х годах XX в. И. Г. Чеботаревым и А. В. Дородновьш доказано, что существует пять видов квадрируемых луночек, но они не квадрируемы вместе с кругом.

Вторая часть «Математических упражнений», посвященная вопросам механики, по объему составляет почти половину книги.

В 1725 г. Д. Бернулли вместе с И. Бернулли получил первую премию на объявленном Парижской академией наук первом конкурсе на тему «О средствах сохранять равномерность водяных или песочных часов на море». Считается, что этот успех исследования по прикладной механике определил постоянный интерес Д. Бернулли к практическим задачам. И 5 июля 1725 г. был подписан контракт, по которому Д. Бернулли предоставлялось место профессора физиологии Петербургской академии наук с жалованьем 800 рублей в год; 27 октября 1725 г. он вместе с братом Николаем II Бернулли, получившим профессуру по кафедре математики с окладом 1000 рублей (самым высоким из всех платившихся академикам—составлял 4% от суммы, отпущенной Петром I на организацию академии), прибыл в Петербург. В духе механистических воззрений XVII—XVIII вв. Д. Бернулли на кафедре анатомии и физиологии намеревался с помощью механикоматиматических методов изучать тайны живой природы. Он хотел открыть «новую эпоху в физиологии» (из письма Гольдбаху от 17 июня 1730 г.). Произошло же совсем иное: открытия Д. Бернулли легли в основу гидродинамики, гидравлики, физиологии; они применяются в геологии, при исследовании динамики звёзд, в других областях точного естествознания.

Характеристики

Тип файла
Документ
Размер
480,78 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7041
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее