5797-1 (675527), страница 2

Файл №675527 5797-1 (Счётные множества) 2 страница5797-1 (675527) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Доказательство: Проведем доказательство для случая объединения трёх множеств, из контекста будет ясна полная общность рассуждения.

Пусть А, В, С три счётных множества:

А={а1, а2, а3, . . .}, В={b1, b2, b3, . . . } и

С={с1, с2, с3, . . .}.

Тогда множество D = АВС можно представить в форме последовательности:

D={а1, b1, c1, а2, b2, c2, а3, . . .},

и счётность множества D очевидна.

Теорема 7. Объединение счётного множества попарно не пересекающихся конечных множеств есть счётное множество.

Доказательство: Пусть Аk (k=1, 2, 3, . . . ) суть попарно не пересекающихся конечных множеств:

А1={ . . . , };

А2={ . . . , };

А3={ . . . , };

. . . . . . . . . . . . . . .

Для того чтобы расположить объединение их С в форме последовательности, достаточно выписать подряд все элементы множества А1, а затем элементы множества А2 и так далее.

Теорема 8. Объединение счётного множества попарно не пересекающихся счётных множеств есть счетное множество.

Доказательство: Пусть множества Аk (k=1, 2, 3, . . .) попарно не пересекаются и счетные. Запишем эти множества следующим образом:

А1={ . . . };

А2={ . . . };

А3={ . . . };

. . . . . . . . . . . .

Если мы выпишем элемент , затем оба элемента и у которых сумма верхнего и нижнего индексов равна 3, затем элементы у которых эта сумма равна 4, и так далее, то множество С= окажется представленной в форме последовательности:

С = { . . . },

Откуда и следует счётность множества С.

Замечание: Условие отсутствия общих элементов в теоремах 5-8 могло быть опущено.

- 5 -

V. Используя доказанные выше теорем можно привести другое доказательство теоремы 2 отличное от предыдущего.

Доказательство теоремы 2: Множество дробей вида с данным знаменателем q, то есть множество . . . , очевидно счётное. Но знаменатель может принять также

счётное множество натуральных значений 1, 2, 3, . . . . Значит в силу теоремы 8, множество дробей вида является счётным множеством; удаляя из него все сократимые дроби и применяя теорему 4, убеждаемся в счётности множества всех положительных рациональных чисел R+. Так как множество R- отрицательных рациональных чисел очевидно эквивалентно множеству R+, то счетным является и оно, а тогда счётно и множество R, ибо R= R+ R- {0}.

Из теоремы 2 вытекает следующие очевидное следствие.

Следствие. Множество рациональных чисел любого сегмента [a, b] является счётным множеством.

Сформулируем в виде теоремы еще один пример счётного множества.

Теорема 9. Множество Р всех пар натуральных чисел является счетным множеством.

Отступление: Под парой натуральных чисел понимают два натуральных числа данных в определённом порядке.

Доказательство: Назовём высотою пары (n, m) натуральное число n+m. Очевидно, имеется ровно k-1 пар данной высоты k, где k>1, именно

(1, k-1), (2, k-2), . . . , (k-1, 1).

По этому обозначая через Рk множество всех пар высоты k, видим что множество Р есть объединение счётного множества конечных множеств Рk, а отсюда по теореме 7 получаем что множество Р является счётным множеством.

Теорема 10 также даёт любопытный пример счетного множества.

Теорема 10. Множество S всех конечных последовательностей, составленных из элементов данного счётного множества D, есть счётное множество.

Доказательство: (посредствам полной математической индукции) Из предыдущей теоремы вытекает, что множество пар, составленных из элементов счётного множества D, есть счётное множество. Предположим, что доказана счётность множества Sm всех последовательностей, состоящих из m элементов данного счётного множества D. Докажем, что множество Sm+1 всех последовательностей, состоящих из m+1 элементов множества D также счётно. В самом деле, пусть

D={d1, d2, . . . , dk, . . .}.

Каждой последовательности S(m +1)=(di , . . , di , dk) Sm+1 соответствует пара (S(m), dk), где S(m)= (di , . . , di ) Sm, причем различным парам соответствуют различные пары этого вида. Так как множество Sm всех S(m) счётно, и может быть записано в виде S , . . . , S , . . . , то счётно и множество всех пар (S , dk) (взаимно однозначно соответствующих парам натуральных чисел индексов i, k), а значит, и множество всех S(m +1).

Так как каждое Sm счётно, то счётно и множество S, что и доказывает теорему.

В заключении докажем следующую, весьма общую теорему:

- 6 -

Теорема 11. Если элементы множества А определяются n значками, каждый из которых независимо от других пробегает счётное множество значений

А={a , , . . . , } (xk=x , x , . . . ; k=1, 2, 3, . . . ,n),

то множество А счётно.

Доказательство: Докажем теорему методом математической индукции.

Теорема очевидна, если n=1, то есть имеется только один значок. Допустим, что теорема верна для n=m, и покажем, что она справедлива для n=m+1.

Итак пусть А={a , , . . . , , }.

Обозначим через Ai множество тех элементов А, для которых , где одно из возможных значений (m+1)-го значка, т. е. положим Ai =={a , , . . . , , }.

В силу сделанного допущения множество Ai счётно, а так как А= , то счётно и множество А.

Вот несколько предложений, вытекающих из этой теоремы:

Множество точек (x, y) плоскости, у которых обе координаты рациональны, счётно.

Но более интересным является следующий факт:

Множество многочленов с целыми коэффициентами счётно.

В самом деле, это непосредственно следует из теоремы 11, если только рассматривать многочлены фиксированной степени n, и для завершения доказательства следует применить теорему 8.

Список литературы

1.Александров П.С. Введение в общую теорию множеств и функций. – Ленинград, 1948.

Никольский С.М. Курс математического анализа. – Москва, 1983.

Кудрявцев Л.Д. Математический анализ (том 1). – Москва, 1973.

Архангельский А. В. Канторовская теория множеств. – Москва, 1988.

Куратовский К. и Мастовский А. Теория множеств. – Москва, 1970.

Медведев Ф.А. Развитие теории множеств в 19 веке. – Москва, 1965.

Характеристики

Тип файла
Документ
Размер
835,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее