64138 (674299), страница 2

Файл №674299 64138 (Модемы (модемные протоколы коррекции ошибок)) 2 страница64138 (674299) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

2. Протоколы коррекции ошибок

Строго говоря, противопоставление протокола V.42 CCITT (the International Telegraph and Telephone Consultative Committee) и MNP (the Microcom Networking Protocol) не вполне корректно. Дело в том, что Рекомендация V.42 CCITT - единый стандарт (по традиции называемый "Ре­комендация"), описывающий все рассматриваемые протоколы коррекции оши­бок. То, что в обиходе называется MNP2 и MNP3, есть соответственно байт-ориентированный и бит-ориентированный режимы протокола, описанного в Дополнении A к Рекомендации V.42, а то, что называется протоколом

V.42, - протокол, описанный в основной части Рекомендации. Однако исто­рически сложилось так, что появление протоколов фирмы Microcom пред­шествовало выходу "Голубой Книги" CCITT с Рекомендацией V.42. Поэтому в дальнейшем применяется сложившаяся терминология, которая хоть и не вполне корректна, зато проста и компактна.

То, что по недоразумению называют протоколом MNP4, протоколом на самом деле не является. Это не более, чем модифицированная реализация протоколов MNP2 и MNP3. А посему, ввиду отсутствия предмета, упоминание MNP4 в дальнейшем изложении отсутствует.

Протокол коррекции ошибок определяет формат кадра, перечень до­пустимых типов кадров, логическую структуру кадра каждого типа и собс­твенно протокол, т.е. порядок установки режима коррекции ошибок, выхода из режима и допустимого чередования кадров.

2.1. MNP2

Протокол коррекции ошибок MNP2 является знак-ориентированным про­токолом типа BSC (Binary Synchronous Communications). Его наличие или отсутствие никак не затрагивает формат передачи байта по каналу: он подвергается асинхронно-синхронному преобразованию в соответствии с Ре­комендацией V.14 CCITT. Каждый элемент кадра - байт - состоит из 8 ин­формационных бит, передается по каналу последовательно, младшим битом вперед; выдача первого бита предваряется стартовым битом (0), служащим синхросигналом приемнику; после передачи последнего бита выдается сто­повый бит (1). Если следующий байт не готов к выдаче, передается поток стоповых битов. Таким образом можно считать, что байт состоит как мини­мум из 10 бит, включая один стартовый и один стоповый биты (абстрагиру­ясь от незначительных в данном контексте подробностей, связанных с вы­равниванием скоростей на коммуникационных интерфейсах передатчика и приемника).

Из этого обстоятельства есть два весьма существенных следствия. Во-первых, процедура входа в протокол прозрачна и не требует специаль­ного синхронного переключения обоих модемов в какой-то специфический режим работы асинхронно-синхронного преобразования данных. В любой мо­мент модем может начать передачу символов, являющихся не самоценными данными, а служебным полем кадра протокола MNP2. Лишь бы приемник был готов на логическом уровне идентифицировать это обстоятельство. Во-вто­рых, реализация протокола может быть вынесена на уровень программного обеспечения компьютера, оставляя модем и вовсе в неведении относительно наличия протокола коррекции ошибок. Хорошо это или плохо - предмет от­дельного разговора, но это дополнительная степень свободы, предоставля­емая (или, вернее, не отнимаемая) протоколом.

Формат кадра MNP2 следующий:

- управляющее поле начального флага, включающее три байта: SYN, DLE и STX (16h, 10h, 2h);

- прозрачные пользовательские данные переменной длины;

- управляющее поле конечного флага, включающее 2 байта: DLE и ETX

(10h, 3h);

- двухбайтовая контрольная последовательность кадра, подсчитанная с помощью образующего полинома X^16 + X^15 + X^2 + 1.

Кодовая прозрачность управляющих полей обеспечивается байтом DLE, сигнализирующим о специальном значении следующего за ним байта. Если же этот байт встречается в пользовательских данных, то он должен дублиро­ваться, чем обеспечивается прозрачность самих пользовательских данных. Иногда процедуру вставки байта DLE в пользовательские данные в протоко­ле типа BSC называют байтстаффингом. Поскольку протокол MNP2 - знак-ориентированный, в нем нет специального межкадрового заполнителя. Им служит банальный межбайтовый заполнитель - поток стоповых битов.

В протоколе MNP2 существуют 6 типов кадров: LR, LD, LT, LA, LN и LNA. Каждый тип кадра в поле прозрачных пользовательских данных имеет свою собственную логическую структуру, в которой кодируется признак ти­па кадра, а также присущие ему параметры и пользовательская информация.

2.2. MNP3

Протокол коррекции ошибок MNP3 является бит-ориентированным про­токолом. Кадровый формат его радикальным образом отличается от вышеиз­ложенного и полностью соответствует основной части Рекомендации V.42, включая асинхронно-синхронное преобразование байта, подсчет двухбайто­вой контрольной последовательности кадра с точностью до образующего по­линома, обеспечение прозрачности данных и межкадровый заполнитель. Все это подробнее будет рассмотрено ниже, в разделе, посвященном протоколу

V.42. Все же остальное - перечень типов кадров, их логическая структура и собственно протокол - полностью идентично протоколу MNP2. По сути MNP3 - это паллиатив между MNP2 и V.42.

При бесспорном снижении накладных расходов, обусловленном перехо­дом на синхронный кадровый формат, MNP3 не достигает кондиций V.42, те­ряя в гибкости по сравнению с MNP2. Даже экономии вычислительных ресур­сов невозможно добиться, отказываясь от реализации байт-ориентированно­го режима MNP. По той простой причине, что процедура входа в протокол MNP3 заключается в обмене сторонами кадрами LR в байт-ориентированном режиме. Только согласовав с помощью этого кадра применение в дальнейшем бит-ориентированного режима, стороны синхронно в него переключаются. Таким образом, все вычислительные процедуры, присущие MNP2 - формирова­ние кадра специфического формата, вычисление контрольной последователь­ности по специфическому образующему полиному, байтстаффинг и пр. - все это необходимо реализовывать для установки протокола MNP3. И в этой связи совершенно непонятна логика разработчиков некоторых дорогостоящих модемов, в которых байт-ориентированный режим MNP считается устаревшим и не поддерживается (например, ZyXEL U-1496). Не говоря уже о том, что это является прямым нарушением Рекомендации V.42: "An error-correcting entity that supports framing mode 3 must also support framing mode 2." (CCITT, Blue Book, Volume VIII - Fascicle VIII.1, Data communication over the telephone network, Geneva 1989, p. 349).

В качестве заметки на полях, хотелось бы обратить внимание sysop'ов BBS, пользующих ZyXEL, на такое его поведение. Полагая, что столь неплохо зарекомендовавший себя модем умеет все делать сам, опера­торы станций не подключают драйверы, эмулирующие MNP2. И тем самым практически исключают из числа своих абонентов тех несчастных, модемы которых аппаратно не поддерживают протоколы коррекции ошибок и которые вынуждены уповать только на программную реализацию MNP2.

2.3. V.42

Протокол коррекции ошибок V.42 является подмножеством, называемым LAPM (Link Access Procedure for Modems), бит-ориентированных протоколов типа HDLC (High-level Data Link Control). Как уже было сказано выше, формат кадра LAPM отличается от кадрового формата MNP2. Если последний можно было условно назвать асинхронным кадровым форматом, то LAPM можно смело называть синхронным.

Кадр LAPM состоит их нескольких полей, каждое из которых включает целое число байт. Все байты в кадре передаются последовательно друг за другом без каких бы то ни было служебных битов: вслед за старшим битом предыдущего байта передается младший бит следующего. Все кадры начина­ются и заканчиваются уникальной битовой последовательностью, называемой флагом: шестью единицами подряд, окаймленными нулями (01111110b, 7Eh). Кодовая прозрачность тела кадра обеспечивается вставкой нулевого бита вслед за пятью подряд единицами, независимо от значения следующего бита (битстаффинг). Межкадровым заполнителем служит флаговая последователь­ность. Завершающий флаг одного кадра может одновременно служить началь­ным флагом следующего. Таким образом, битстаффинг гарантирует приемник от появления флага в середине кадра; обнаружение флага в потоке данных говорит приемнику об окончании принимаемого кадра; появление в потоке флаговых комбинаций последовательности битов, отличных от флага, гово­рит о начале следующего кадра. Резюмируя вышеизложенное, правильнее, думается, называть LAPM "кадр-ориентированным" протоколом, нежели "бит-ориентированным".

Формат кадра LAPM следующий:

- начальный флаг (7Eh);

- поле адреса;

- управляющее поле;

- информационное поле;

- двухбайтовая или четырехбайтовая контрольная последовательность кадра;

- конечный флаг (7Eh).

Подробное описание полей кадров LAPM - предмет довольно скучный. Стоит лишь отметить, что управляющее поле кадра идентифицирует один из трех форматов кадра. Информационные кадры (I-формат) предназначены для передачи информации с возможностью одновременного подтверждения приня­той информации. Супервизорные кадры (S-формат) предназначены для подт­верждения принятой информации, запроса на повторную передачу или сооб­щения оппоненту о неготовности к приему. И, наконец, ненумерованные кадры (U-формат) выполняют дополнительные управляющие сеансом процеду­ры, как то: установка/прекращение работы протокола, согласование пара­метров протокола, передача сигнала break, тестирование канала и пр. Всего в протоколе LAPM насчитывается 13 типов кадров:

- 1 кадр I-формата;

- 4 типа кадра S-формата: RR, RNR, REJ и SREJ;

- 8 типов кадров U-формата: SABME, DM, UI, DISC, UA, FRMR, XID и TEST.

Двухбайтовая контрольная последовательность кадра подсчитывается с помощью образующего полинома X^16 + X^12 + X^5 + 1. Стоит обратить внимание на тот факт, что образующий полином отличается от того, кото­рый используется в протоколе MNP2. Четырехбайтовая контрольная последо­вательность кадра подсчитывается с помощью образующего полинома X^32 + X^26 + X^23 + X^22 + X^16 + X^12 + X^11 + X^10 + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1. Выбор CRC-16 или CRC-32 производится в процессе согласо­вания параметров протокола с помощью кадров XID.

Вход в протокол - операция весьма ответственная и потому тщатель­но спланирована. Вызывающий модем начинает установку протокола непре­рывной передачей своему оппоненту двухбайтовых "шаблонов обнаружения вызывающего" (ODP, Originator Detection Pattern) в байт-ориентированном режиме, соответствующем Рекомендации V.14 CCITT. ODP состоит из байтов 11h и 91h, разделенных между собой 8 - 16 стоповыми битами. Отвечающий модем, приняв два подряд ODP, начинает выдавать "шаблоны обнаружения отвечающего" (ADP, Answerer Detection Pattern) в том же байт-ориентиро­ванном режиме. ADP состоит из байтов 45h ('E') и 43h ('C'), разделенных между собой 8 - 16 стоповыми битами. После выдачи десяти ADP отвечающий модем переключается в синхронный режим. Вызывающий модем, приняв два подряд ADP, прекращает передачу ODP и переключается в синхронный режим. Выдача первого кадра в синхронном режиме предваряется как минимум 16 флаговыми последовательностями, с помощью которых выдерживается пауза для гарантированного переключения обоих сторон в синхронный режим. Пер­вым кадром, как правило, оказывается кадр XID, с помощью которого сто­роны согласуют параметры протокола коррекции ошибок и сжатия.

3. Слава, слава V.42, победителю

Столь смелое восклицание обязывает непосредственно перейти к из­ложению факторов, по которым сравнительный анализ протоколов коррекции ошибок свидетельствует в пользу V.42.

3.1. Минимизация накладных расходов.

Совокупное преимущество V.42 по этому фактору имеет несколько составляющих.

а) Очевидное преимущество MNP3 и V.42 перед MNP2, обусловленное переходом на синхронный кадровый формат, заключается в уменьшении объ­ема передаваемых по каналу данных по крайней мере на 20% вследствие от­каза от передачи стартовых и стоповых битов.

б) Обеспечение кодовой прозрачности данных в байт-ориентированном режиме приводит в худшем случае, когда вся пользовательская информация состоит из одних байтов DLE, к увеличению объема передаваемых данных на 100%. Для синхронного кадрового формата худший случай, заключающийся в том, что пользовательская информация состоит из одних единиц (байтов 0FFh), приводит к увеличению объема передаваемых данных лишь на 20% - вставки дополнительного 0 после каждых пяти единиц.

в) Накладные расходы на передачу пользовательской информации пос­редством I кадра протокола V.42, обусловленные структурой кадра, сос­тавляют 6 байт. Аналогичные накладные расходы для кадров LT, осущест­вляющих передачу пользовательской информации, для протокола MNP3 сос­тавляют 8 байт, а для протокола MNP2 - 12 байт.

г) При двусторонней передаче информации протоколы MNP будут либо откладывать подтверждение принятой информации, неоправданно "загромож­дая" буфера оппонента отправленными, но неподтвержденными кадрами, либо будут вынуждены чередовать передачу пользовательской информации с подт­верждениями очередных принятых кадров, т.е. увеличивать накладные рас­ходы на 11 байт для MNP3 и на 15 байт для MNP2 (длина кадра LA). I кадр протокола V.42 в самой своей структуре несет функцию подтверждения при­нятой информации, и потому дополнительных накладных расходов не требу­ет.

3.2. Надежность входа в протокол.

Процедура входа в любой из протоколов MNP заключается в обмене сторонами кадрами LR в байт-ориентированном режиме. Переключение в

синхронный кадровый формат протокола MNP3 производится только после вы­дачи инициатором кадра LA (и, соответственно, его приема отвечающим), подтверждающего прием ответного кадра LR. Длина кадра LR составляет 31 байт, а кадра LA - 15 байт. Таким образом, установка протокола обуслов­лена безошибочным приемом 31 байта отвечающим модемом, затем 31 байта вызывающим модемом и, наконец, 15 байт вновь отвечающим модемом. В то время, как для установки протокола LAPM требуется безошибочно передать всего лишь по 4 байта в каждую сторону - по 2 ODP/ADP, соответственно. Впрочем, эти 4 байта должны перемежаться потоком стоповых бит длиной в среднем в 1.5 байта. Поэтому для корректности надо говорить о 10 бай­тах. Очевидно, что при наличии помех (в противном случае в протоколе просто нет нужды) вероятность безошибочного приема 10 байт значительно выше, чем 31 байта и, тем более, 46 байт.

Кроме того, поток ODP/ADP включает в себя не менее 10 шаблонов, т.е. каждая пара повторяется не менее 5 раз. В то время, как в случае неудачи приема кадра LR какой-либо из сторон, обмен этими кадрами будет повторен по истечении тайм-аута лишь однажды. Превосходство в кратности повтора процедуры еще более увеличивает разницу в вероятностях успешно­го входа в протокол коррекции ошибок, подчеркивая преимущество протоко­ла LAPM над MNP.

3.3. Устойчивость к полеганию.

Этот фактор характеризует как преимущество синхронного кадрового формата над байт-ориентированным режимом, так и преимущество собственно протокола LAPM над MNP. Имеется в виду здесь следующее. Помехи не раз­бирают (хочется надеяться) какова логическая значимость того или иного бита, который они искажают до неузнаваемости. Это может быть "рядовой" бит пользовательских данных, а может и бит в управляющем поле кадра. Если представить себе, что этот злосчастный бит находится в двухбайто­вом управляющем поле конечного флага кадра протокола MNP2, то нетрудно себе представить что это значит для принимающей стороны. Потеря конца кадра приводит к тому, что принимающая сторона воспринимает поток сто­повых битов, являющийся межкадровым заполнителем, в качестве паузы меж­ду двумя соседними байтами принимаемого незаконченного кадра. Все это продолжается вплоть до появления стартового флага следующего кадра, ли­бо до истечения тайм-аута. Даже если следующий кадр не заставил себя долго ждать, весь он будет фактически накладным расходом, так как даже при безошибочном его приеме, он будет признан недействительным вследс­твие ошибки последовательной его нумерации из-за неприема его предшест­венника.

Характеристики

Тип файла
Документ
Размер
119,95 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее