61973 (674251), страница 2
Текст из файла (страница 2)
— в память ЭВМ записываются значения текущих координат всех элементов;
— графическая информация представляется в аналитическом виде;
— исходные данные описываются на специальном графическом языке.
Все перечисленные методы и способы преобразования и представления в ЭВМ графической информации определяют требования, предъявляемые к техническим средствам преобразования информации для ЭВМ в АСУ.
Устройство ввода графической информации ( УВГИ ) —это устройство, преобразующее графические данные в машинные коды.
Любую графическую информацию можно рассматривать как набор оптических неоднородностей, отличающихся по яркости и цвету. Таким образом, любое УВГИ решает следующие задачи:
1. дискретизация изображения на элементы;
2. преобразование оптической информации в электрический аналоговый сигнал;
3. преобразование аналогового сигнала в цифровой код.
Количество дискретных элементов определяется заданной точностью представления графической информации. Объемом информации о графическом изображении определяется быстродействие УВГИ.
По методам дискретизации различают УВГИ автоматического и полуавтоматического типов. К автоматическим УВГИ относятся матричные, сканирующие и следящие устройства; к полуавтоматическим —телевизионные, акустические, оптические, электрические и электромеханические устройства.
С КАНЕР
Вводить изображение в компьютер можно разными способами, например используя видеокамеру или цифровую фотокамеру. Еще одним устройством ввода графической информации в компьютер является оптическое сканирующее устройство, которое обычно называют сканером. Сканер позволяет оптическим путем вводить черно-белую или цветную печатную графическую информацию с листа бумаги. Отсконировав рисунок и сохранив его в виде файла на диске, можно затем вставить его изображение в любое место в документе с помощью программы текстового процессора или специальной издательской программы электронной верстки, можно обработать это изображение в программе графического редактора или отослать изображение через факс-модем на телефакс, находящейся на другом конце света.
Сканер —это глаза компьютера. Первоначально они создавались именно для ввода графических образов, рисунков, фотоснимков, чертежей, схем, графиков, диаграмм. Однако, помимо ввода графики, в настоящее время они все шире используются в довольно сложных интеллектуальных системах OCD или Optical Character Recognition, то есть оптического распознания символов. Эти “умные “системы позволяют вводить в компьютер и читать текст.
Сперва текст вводится в компьютер с бумаги как графическое изображение. Затем компьютерная программа обрабатывает это изображение по сложным алгоритмам и превращает в обычный текстовый файл, состоящий из символов ASCII. А это значит, что текст книги или газетной статьи можно быстро вводить в компьютер, вовсе не пользуясь клавиатурой!
А если система распознавания OCR соединяется еще и с программой перевода, в компьютер можно вводить страницы текста на иностранном языке и почти мгновенно получать готовый перевод. Конечно литературные качества электронного перевода обычно не слишком высокие, в научно-технических текстах литературные достоинства —не самое главное, зато готовый перевод формально достаточно точен и его можно получить фантастически быстро.
Сканеры бывают различных конструкций.
Ручной сканер. Это самый простой и дешевый сканер. Ручной сканер, словно мышка, соединяется кабелем с компьютером. При прокатывании сканера по странице книги или журнала, необходимое изображение считывается и в цифровом коде вводиться в память компьютера. В ручном сканере роль привода считывающего механизма выполняет рука. Понятно, что равномерность перемещения сканера существенно сказывается на качестве вводимого в компьютер изображения. Ширина вводимого изображения для ручных сканеров обычно не превышает 4 дюймов ( 10 см ). Современные ручные сканеры могут обеспечивать автоматическую “склейку “изображения, то есть формируют целое изображение из отдельно вводимых его частей. К основным достоинствам этих сканеров относятся небольшие габаритные размеры и сравнительно низкая цена, однако добиться высокого качества изображения с их помощью очень трубно, поэтому ручные сканеры можно использовать для ограниченного круга задач. Кроме того они совершенно лишены “интеллектуальности “, свойственной другим типам сканеров.
Планшетный сканер. Это наиболее распространенный тип сканеров. Первоначально он использовался для сканирования непрозрачных оригиналов. Почти все модули имеют съемную крышку, что позволяет сканировать “толстые “оригиналы ( журналы, книги ). Дополнительно некоторые модели могут оснащаться механизмом подачи отдельных листов, что удобно при работе с программами распознавания текстов —OCR ( Optical Characters Recognition ). В последние время многие фирмы-лидеры в производстве плоскостных сканеров стали дополнительно предлагать слайд-модуль ( для сканирования прозрачных оригиналов ). Слайд-модуль имеет свой, расположенный сверху, источник света. Такой слайд-модуль устанавливается на плоскостной сканер вместо простой крышки и превращает сканер в универсальный ( плоскостной сканер с установленным слайд-модулем ).
Барабанный сканер. Основное его отличие состоит в том, что оригинал закрепляется на прозрачном барабане, который вращается с большой скоростью. Считывающий элемент располагается максимально близко от оригинала. Данная конструкция обеспечивает наибольшее качество сканирования. Обычно в барабанные сканеры устанавливают три фотоумножителя, и сканирование осуществляется за один проход. “Младшие “модели у некоторых фирм с целью удешевления используют вместо фотоумножителя фотодиод в качестве считывающего элемента. Барабанные сканеры способны сканировать любые типы оригиналов.
В отличие от плоскостных сканеров со слайд-модулем, барабанные могут сканировать непрозрачные и прозрачные оригиналы одновременно.
Проекционный сканер. Этот тип сканеров применяется для сканирования с высоким разрешением и качеством слайдов небольшого формата ( как правило, размером не более 4 x 5 дюймов ). Существует две модификации: с горизонтальным и вертикальным расположением оптической оси считывания. Наиболее популярным в России, как, впрочем, и на Западе, является вертикальный проекционный сканер.
Типов оригиналов бывает всего два. Это прозрачные негативные и позитивные слайды, которые сканируют в проходящем свете. Непрозрачные оригиналы представляют собой либо аналоговые изображения —фотографии, либо дискретные —иллюстрации из печатных изданий ( в полиграфии полутоновая печать осуществляется с помощью растровых точек различного цвета и размера ).
Считывание изображения. Механизмы считывания изображения базируются или на фотоумножителе, или на ПЗС. Фотоумножитель проще всего сравнить с радиолампой-фотосенсором, у которой имеются пластины катода и анода и которая конвертирует свет в электрический сигнал. Считываемая информация подается на фотоумножитель точка за точкой с помощью засвечивающего луча. ПЗС —относительно дешевый полу проводниковый элемент довольно малого размера. ПЗС так же как и умножитель конвертирует световую энергию в электрический сигнал. Набор элементарных ПЗС-элементов располагают последовательно в линию, получая линейку для считывания сразу целой строки, естественно и освещается сразу целая строка оригинала. Цветное изображение такими сканерами считывается за три прохода ( с помощью RGB-светофильтра ). Многие сканеры имеют три параллельные линейки ПЗС, тогда сканирование цветных оригиналов осуществляется за один проход, так как каждая линейка считывает один из трех базовых цветов. Потенциально ПЗС-сканеры более быстродейственны чем барабанные сканеры на фотоумножителях.
Качество изображения. Сканеры различаются по многим параметрам —технология считывания изорбражения, типу механизма и некоторым другим. Существуют параметры сканирующего устройства, влияющие на качество изображения. К таким параметрам относится оптическая разрешающая способность, число передаваемых полутонов и цветов, диапазон оптических плотностей, интеллектуальность сканера, световые искажения, точность фукосировки ( резкость ).
Интеллектуальность сканера. Под интеллектуальностью обычно подразумевается способность сканера с помощью заложенных в нем аппаратным и поставляемых с ним программных средств автоматически настраиваться и минимизировать потери качества. Наиболее ценятся сканеры, обладающие способностью автокалибровки, т.е. настройки на денамический диапазон плотностей оригинала, а также компенсации цветовых искажений. Допустим, мы имеем ПЗС-сканер, воспринимающий оптический диапазон плотностей до 3.2. С его помощью нам нужно отсканировать слайд, имеющий максимальную оптическую плотность 4.0. “Хороший”сканер сначала делает предварительное сканирование для анализа оригинала и получения диаграммы оптических плоскостей. После анализа диаграммы сканер производит свою автокалибровку с целью сдвига своего динамического диапазона восприятия оптических плотностей. таким образом минимизируются потери в “тенях”благодаря сокращению потерь в “светах”.
Цветовые искажения сканеров. Каждый сканер обладает своими собственными недостатками при восприятии цветов и общими недостатками, присущими данной модели. Общие недостатки обусловлены техническими возможностями и механическими характеристиками модели. Собственный недостаток сканера обусловлен индивидуальной способностью освещающего оригинал источника света и считывающего элемента. Считается, что все продаваемые сканеры проходят заводскую калибровку. Однако, если сканер имеет функцию автокалибровки, то это большое преимущество перед сканером, лишенным такой функции. Автокалибровка сканера позволяет скорректировать цветовые искажения и увеличить число распознаваемых цветовых оттенков. Поскольку источник света имеет свойство изменять свои характеристики со временем, как, впрочем, и считывающий элемент, наличие автокалибровки приобретает первостепенное значение, если Вы постоянно с цветными полутоновыми изображениями. Практически все современные модели сканеров обладают такой функцией.
Ц И Ф Р О В А Я Ф О Т О К А М Е Р А
Чтобы ввести цветное изображение со снимка в память компьютера, нужен цветной сканер или дигитайзер для ввода слайдов.
Спрашивается, а нужно ли вообще вводить изображения в компьютер?
Убедительных аргументов в пользу ввода снимков в компьютер может быть немало. Во-первых, для профессиональных целей фоторепортерам порой действительно нужны мгновенные снимки, чтобы сразу же убедиться в их качестве и выразительности. Во-вторых, такие цифровые снимки можно немедленно использовать для электронной верстки, например, в журналисткой практике в газете, на телевидении или в информационном агенстве. В‑третьих, файл с изображением можно тут же переправить по каналам связи на любое расстояние. В‑четвертых, в цифровые изображения в компьютере можно легко вмешиваться, их удобно редактировать, кадрировать, ретушировать, оснащать спецэффектами. В‑пятых, вполне оправдан повсеместный отказ от применения химических процессов по экологическим соображениям. В‑шестых, долговременно хранить готовые фотоснимки удобнее и надежнее на компакт-дисках. В‑седьмых, с помощью компьютера весьма удобно показывать снимки в большой аудитории, студентам или школьникам. В‑восьмых, цифровые снимки необходимы для создания мультимедиа. И еще многое другое.
Итак, цифровая камера предназначена для ввода изображений в компьютер. Но печатные изображения в компьютер можно ввести и с помощью сканера, а “живые “кадры можно “схватить “и ввести прямо с видеокамеры или с видеомагнитафона. Однако цифровые фотокамеры превосходят по качеству ввод с видеокамеры. Кроме того, цифровая камера —самый быстрый и простой способ ввода изображения в компьютер. Цифровые камеры записывают изображение в память, которая затем может быть без дополнительных специальных устройств введена в любой компьютер через порт связи.
А чтоб навсегда сохранить полученные снимки, фирма Kodak разработала практическую и недорогую технологию размещения электронных фотографий на компакт-дисках в стандарте Rodak Photo CD. Эта технология скоро вытеснит традиционную химическую фотографию. На каждом компакт-диске может поместиться целый фотоальбом. С помощью плейера, диски
Photo CD можно просматривать на экране любого телевизора или компьютера.
Д ИГИТАЙЗЕР
Дигитайзер —это еще одно устройство ввода графической информации, имеющее пока сравнительно узкое применение для некоторых специальных целей. Свое название дигитайзеры получили от английского digit —цифра. То есть по-русски их можно назвать просто “оцифровыватели “.
Впрочем, есть и более благозвучное название —англо-цифровые преобразователи.
Обычно дигитайзеры выполняются в виде планшета. Поэтому такие устройства часто называют графическими планшетами. Применяется такой дигитайзер для поточечного координатного ввода графических изображений в системах автоматического проектирования, в компьютерной графике и анимации. Надо отметить, что это далеко не самый быстрый и удобный способ построения рисунков и чертежей, особенно в случае сложной геометрии. Но зато графический планшет обеспечивает наиболее точный ввод графической информации в компьютер.
Графический планшет обыкновенно содержит рабочую плоскость, рядом с которой находятся кнопки управления. На рабочую плоскость может быть нанесена вспомогательная координатная сетка, облегчающая ввод сложных изображений в компьютер. для ввода информации служит специальное перо или координатное устройство с “прицелом “, подключенное кабелем к планшету. Сам дигитайзер также подключается к компьютеру кабелем через порт связи. Разрешающая способность таких графических планшетов не менее 100 dpi ( точек на дюйм ).
В самых совершенных и дорогих дигитайзерах ввод информации происходит без специальных перьев или прицелов, так как рабочая поверхность планшета обладает “тактильной чувствительностью “, основанной на использовании пьезоэлектрического эффекта. При нажатии на точку, расположенную в приделах рабочей поверхности планшета, под которой проложена сетка из тончайших проводников, на пластине пьезоэлектрика возникает разность потенциалов. Координаты этой точки обнаруживаются программой-драйвером, сканирующей сетку проводников. Эта программа выполнит отображение точки на экран монитора. Пьезоэлектрические дигитайзеры позволяют чертить на рабочей поверхности планшета, словно на обычной чертежной доске, и таким образом вводить даже несуществующие изображения. При этом графическая информация вводится с разрешением 400 dpi.
Кстати говоря, на этом же принципе основаны новые координатные устройства для работы в графическом интерфейсе пользователя ( в операционной среде Windows или OS/2 ), предназначенные для замены традиционных мышек и трэкболов. Всякий, кто пробовал воспользоваться такими тактильными устройствами, изготовленными, например, японской фирмой Toshida, мог убедиться, что гораздо удобнее и легче водить пальцем по окошку дигитайзера размером менее спичечной коробки, чем пользоваться обычной мышкой: курсор на экране весьма послушно и чутко повторяет движения пальца на планшете. Ни каких дополнительных кнопок в таком дигитайзере нет. Указав на экране дисплея нужный выбор, достаточно дважды стукнуть пальцем по окошку и компьютер поймет сообщение.
Для ввода графической информации могут так же использоваться некоторые виды планшетных графопостроителей. Однако многие готовые изображения ( фотографии, чертежи, рисунки, карты, графики, слайды, кинофильмы ) гораздо удобнее вводить с помощью специального видеодигитайзера. В простейшем случае видеодигитайзером может даже служить видеокамера. В настоящее время выпускается множество специальных графических систем с различными типами видеодигитайзеров, позволяющих вводить в компьютер цветные изображения с бумаги или со слайдов. К числу видеодигитайзеров относится и цифровая фотокамера.
В современных киностудиях применяются специальные дигитайзеры для переноса изображения с кинопленки в компьютер. После цифровой обработки изображение снова помещается на пленку. В связи с этим поговаривают, что скоро компьютеры смогут вообще вытеснить из кино живых актеров.
Такое предположение вполне реально. Например, в компьютер введут фотографии кинозвезд, компьютер синтезирует из этих снимков некий произвольный персонаж, который своим обликом будет точно соответствовать вкусам зрителей. Затем этот синтетический герой может очень правдоподобно “ожить “на экране, и при этом совершать невероятные трюки, словно персонаж мультипликации.
Дигитайзером в компьютерах киностудий уже сегодня вводят фотографии пейзажей и нарисованные декорации, интерьеры и костюмы. Надвигается эпоха виртуальной реальности, созданной в памяти компьютера.