referat (666868), страница 2
Текст из файла (страница 2)
Шло время, и на смену уличным впечатлениям пришел интерес к внутренней жизни египтян, их религии, преданиям, обрядам. Здесь поводов для удивления было еще больше. Если греческие боги были воплощением самих людей, которыми они повелевали, с людскими заботами, радостями, страстями и страстишками, то боги Египта носили облик зверей или причудливо сочетали человеческие и животные черты. Тем более странным было видеть обычных животных, считавшихся египтянами воплощением этих звероподобных божеств.
Священным животным оказывали необычайные почести. Трупы кошек отвозили в город Бибатис, где их бальзамировали и погребали в священных покоях. Соколов хоронили в городе Буто, а ибисов — в Гермополе.
Чужестранцу разобраться во всей этой премудрости, создаваемой на протяжении тысячелетий, было совершенно невозможно. Но Пифагор понимал, что путь к знаниям, охраняемым кастой жрецов, лежит через религию. Другого пути не было, и даже Пифагору на это потребовались годы.
Всякое образование начинается с обучения чтению и письму.
Древний Египет был страной высокой грамотности. В Древнем Египте существовала целая армия писцов, прекрасно организованная и великолепно обученная.
Писцов готовили с детства в специальных школах. Папирус был слишком дорог, и поначалу ученики писали на пластинках известняка, разграфленных в линейку или клетку. Это были «тетради» для упражнений, на которых учились выводить иероглифы или скорописные знаки, а затем и целые тексты — классические и священные. Наконец, перед тем как выйти на самостоятельную дорогу, выпускник получал драгоценный папирус. Каждый песец был не просто чертежником иероглифов — он был художником.
Вместе с египетскими мальчишками сел за известняковые пластинки и возмужалый эллин с черной курчавой бородой. Но в отличие от своих меньших сотоварищей уши бородатого эллина не были на спине, да и голова его стояла на месте. Очень скоро ученик писцов Пифагор далеко обогнал своих однокашников.
Но школа писцов была лишь первой ступенью на пути к тайному знанию. Далее нужно было войти в жреческий храм, который был государством в государстве, в особую храмовую школу и досконально изучить египетскую мифологию, образы пантеона Богов, их эпитеты и атрибуты.
«Дом жизни» был собранием ученых, жрецов и мудрецов. «Дом жизни» — это мозг интеллектуальной жизни Древнего Египта, ее память, разум и действие.
Наконец, Пифагор почувствовал себя готовым к осуществлению главной цели своего путешествия — поездке в святая святых жреческой мудрости город Мемфис.
В Мемфисе Пифагор встретил немало, эллинов, живших здесь издавна, но не встретил главного — расположения жрецов. Несмотря на рекомендательные письма от самого Амосиса жрецы не спешили открывать свои тайны. Но Пифагор мужественно сносил все испытания и, в конце концов, его настойчивость победила.
Двери мемфисских храмов открылись перед ним. Сумрак и мертвоё молчание окутывали каждого, кто входил в египетский храм. Лес гигантских каменных колонн был настолько частым, что казалось, будто они сходятся друг к другу, чтобы раздавить пришельца.
Незаметно храм переходил в подземелье, свет мерк, и человек от белого солнца египетской пустыни, от жизни и цвета погружался в тьму безвременья. Темный коридор подземелья упирался в статую Исиды, сидящую в глубоком раздумье с закрытой книгой на коленях «Смертному не дано поднять моего покрывала»,— гласила надпись у ее ног. Рядом скрывалась еле заметная дверь. «Подумай, ты еще можешь вернуться,— сказал ему жрец.— Многие нищие духом ступали за эту дверь, но никто из них не вернулся» Пифагор молча шагнул в темноту, и дверь Исиды захлопнулась за ним.
Маленький светильник был бессилен перед нахлынувшей темнотой, а коридор все петлял и петлял под землей, запутывая ориентацию в пространстве. Наконец, лабиринт переходил в ступени винтовой лестницы, прорубленной в скале, поднявшись по которой путник оказывался в середине просторного зала. «Здесь погибают безумцы, возжелавшие тайного знания»,— троекратно повторило эхо округлого зала чей-то вкрадчивый скрипучий голос. Пифагора и ранее не покидало ощущение, что чьи-то глаза следят за ним из ниш лабиринта. В черной бесконечности зала Пифагор разглядел слабые отблески огня. Он инстинктивно двинулся на чуть заметные блики и через несколько десятков шагов ощутил холод стены зала, а затем различил и нишу, откуда они шли. Ниша переходила в извилистый коридор, с каждым поворотом которого свет все усиливался. Наконец, коридор распрямился, и его дальний конец замыкала сплошная стена огня.
Пифагор остановился в раздумье, и, когда глаза его после непроглядной тьмы привыкли к яркому свету, он увидел, что сквозь огонь есть проход. Обратной дороги не было, и Пифагор прыгнул сквозь обруч пламени. По ту сторону огненной стены стояли два неокора — помощники верховного жреца — и знаком пригласили следовать за ними.
Неокоры объяснили, что Пифагору надлежит три ночи провести под сводами ночного неба, каждое утро, с первыми проблесками рассвета возвращаясь назад в подземную галерею, где его будет ждать чаша с водой и легкая пища.
Пифагор был счастлив. Ночное одиночество, подаренное жрецами, многое изменило в его сознании. Перед жаждущим истины эллином открылись сияющая красота и разумность устройства мироздания.
И все-таки чувство неудовлетворенности не покидало Пифагора. Путь к истине сокрыт не столько в ночных жреческих таинствах, сколько в арифметических таблицах и чертежах. Истина сокрыта в числе! В этом для Пифагора не оставалось сомнений, но холодной мудрости чисел предстояло ещё долго учиться.
Египетская, математика была чисто прикладной наукой: она удовлетворяла потребность в счете (арифметика) в измерении земельных участков (геометрия). Если первое приложение математики естественно для каждой страны, то второе играло особую роль именно в Египте. Важность для Египта отдельной науки — землемерия (по-гречески геометрии) объяснил еще Геродот.
К сожалению, папирус, на котором египтяне записывали математические тексты, слишком подвержен ударам времени. К сегодняшнему дню уцелело лишь два полноценных математических папируса.
За 2000 лет своего существования египетская математика практически не претерпела никаких качественных изменений! В Египте тысячелетиями ничего не менялось. Не изменилась и математика.
Итак, желая узнать, чему научился Пифагор в Египте, мы попали в нелегкую ситуацию. Мы ничего не знаем о египетской математике времен Пифагора. И, тем не менее, анализируя ход развития египетской и греческой математики, можно уверенно сказать: греческая математика избрала свой путь. Греческий путь в математике заключается в выборе системы самоочевидных истин (аксиом) и выявлении с помощью рассуждений (доказательств) глубинных связей между абстрактными фундаментальными понятиями. Что касается египетской науки, то она обращала главное внимание на установление разнообразных конкретных фактов.
Долгое пребывание в атмосфере таинства оставило свой отпечаток в сознании Пифагора. Как бы то ни было, но пора ученичества подходила к концу. Возможно, неудовлетворенность бездоказательностью египетской математики ускорила окончательное решение Пифагора возвращаться на родину. Нужно было ехать домой и создавать свою школу.
Но нелегко было теперь осуществить это, решение, обратное тому, что привело Пифагора 11 лет назад в Египет. Жрецы неохотно открывали двери своих храмов входящему, но ещё крепче закрывали их перед выходящим. Мы не знаем, как Пифагору удалось выбраться из цепких жреческих объятий, но знаем, что и эту преграду Пифагор сумел преодолеть. Мысль Пифагора уже летела к лазурным берегам родной Эллады.
ТЕОРЕМА ПИФАГОРА
Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» — квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора триедина: это простота — красота — значимость. Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о гигантском числе ее конкретных реализации.
Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение I книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка».
Легенда эта прочно срослась с теоремой Пифагора и через 2000 лет продолжает вызывать горячие отклики.
Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета I (ок. 2000 до н.э.), и в древнейшем китайском трактате «Чжоу-би суань цзинь» («Математический трактат о гномоне»), время создания которого точно не известно, но где утверждается, что в XII в. до н.э. китайцы знали свойства египетского треугольника, а к VI в. до н.э.— и общий вид теоремы, и в древнеиндийском геометрическо-теологическом трактате VII — V вв. до н.э. «Сульва сутра» («Правила веревки»),— несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто невозможно представить, что это словосочетание распадется. То же относится и к легенде о заклании быков Пифагором.
Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.
Доказательство:
Теорема Пифагора. Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.