50564 (666607), страница 2

Файл №666607 50564 (Андрей Николаевич Колмогоров - разносторонняя личность 20-го века) 2 страница50564 (666607) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Вся жизнь Андрея Николаевича была посвящена поиску истины и делу Просвещения. Именно его с полным правом можно назвать Просветителем – человеком, освещавшим жизненный и научный путь многим и многим.

«А. Н. КОЛМОГОРОВ – ЧРЕЗВЫЧАЙНОЕ ЯВЛЕНИЕ В НАУКЕ»

Что есть великий учёный? Термины “великий математик”, “великий физиолог” и т. п. ещё не означают ‘великий учёный’. Величие личности как учёного предполагает широту с оттенком космичности. Таковым качеством обладал, например, учёный хранитель Палаты мер и весов (с 1893 г.), действительный член Императорской Академии художеств (с 1894 г.) Дмитрий Иванович Менделеев, в одиночку поднимавшийся на аэростате, разрабатывавший экономику добычи полезных ископаемых, создававший бездымный порох и проводивший критический анализ спиритических опытов.

Чрезвычайность Колмогорова. Колмогоров был именно великий учёный, а не только великий математик. В 1835 г. Гоголь опубликовал свои «Несколько слов о Пушкине»; в числе этих слов были такие: “никто из поэтов наших не выше его” и “Пушкин есть явление чрезвычайное”. Если заменить здесь слова “поэт” и “Пушкин” на “учёный” и “Колмогоров”, получится довольно точная характеристика Колмогорова.

Широта интересов и занятий Колмогорова имеет мало аналогов в XX веке. Первые свои исследования он выполнил, ещё будучи студентом. Они велись с ноября 1920 по январь 1922 года и были посвящены истории Новгорода. Результаты этих изысканий считались утраченными; однако после смерти Колмогорова четыре рукописи его исторических исследований были обнаружены среди его бумаг; теперь они опубликованы. По авторитетному свидетельству В. Л. Янина, эти исследования Колмогорова опередили не только историческую науку двадцатых годов, но и современную нам историческую науку.

Пушкин заметил как-то, что он оказал на юношество и рос­сийскую словесность больше влияния, чем всё Министерство народного образования, несмотря на полное неравенство средств. Таким же было влияние Колмогорова на математику.

Что значит быть математиком? Хорошим математиком? Выдающимся, наконец? По меткому выражению одного ученого, математик—это тот, кто умеет находить аналогии между утверждениями. Лучший математик—кто устанавливает аналогии доказательств. Более сильный может заме­тить аналогии теорий. Но есть и такие, кто между аналогиями видит аналогии. Вот к этим редким представителям послед­них и относится Андрей Николаевич Колмогоров.

Работы Андрея Николаевича относятся к самым различным отраслям математики и её приложений, начиная от абстракт-нейших разделов и кончая такими прикладными областями, как гидродинамика и теория управления, хотя наибольшую извест­ность ему принесли роботы по теории вероятностей - Колмо­горов поставил эту науку на прочный аксиоматический фунда­мент и значительно обогатил многие из её разделов.

Андрей Николаевич является главой сильнейшей в мире на­учной школы по теории вероятностей и математической стати­стике. Для его математических работ характерно то, что он явился пионером и первооткрывателем во многих областях математики: ему принадлежат яркие достижения в теории вероятностей теории функций, функциональном анализе, топо­логии, теории динамических систем, теории турбулентного движения жидкости и Т. д. - трудно указать область

математического анализа, в которую он не сделал бы сущест­венного вклада, где бы он не решил старых (порой двухсотлет­них) проблем.

Первую свою знаменитую работу - пример ряда Фурье суммируемой функции, расходящегося почти всюду, Колмого­ров выполнил в 19 лет. В 1941 году за труды по теории вероят­ностей, опубликованные в 1936 и 1938 годах, учёному присуж­дается Государственная премия первой степени. За цикл работ по проблеме устойчивости гамильтоновских цепей Андрей Николаевич и его талантливый ученик профессор В. И. Ар­нольд удостоены Ленинской премии 1965 года. Авторы разра­ботали совершенно новые математические методы, позволяю­щие решать проблемы, считавшиеся ранее «недоступными». Эти методы оказались настолько плодотворными, что их уда­лось применить не только для исследования классических проблем, но и целого ряда задач, значение которых осознанно только себйчас (задача движения заряженных частиц в «маг­нитных ловушках»).

Сам Андрей Николаевич всегда высоко ценил «спортивно-математические» достижения и самым трудным своим спор­тивным достижением считал работу о 13-й проблеме Гильбер­та.

23 июня 1941 года состоялось расширенное заседа­ние Президиума Академии наук СССР. Принятое на нем решение кладет начало перестройке деятельности науч­ных учреждений. Теперь главное—военная тематика: все силы, все знания—победе. Советские математики по за­данию Главного артиллерийского управления армии ве­дут сложные работы в области баллистики и механики. Колмогоров, используя свои исследования по теории ве­роятностей, дает определение наивыгоднейшего рассеи­вания снарядов при стрельбе. Вот сколь важным оказался его выбор «чистой науки»!

Американский ученый Норберт Винер, один из созда­телей кибернетики, свидетельствовал:

«.. .Хинчин и Колмогоров, два наиболее видных рус­ских специалиста по теории вероятностей, долгое время работали в той же области, что и я. Более двадцати лет мы наступали друг другу на пятки: то они доказывали теорему, которую я вот-вот готовился доказать, то мне удавалось прийти к финишу чуть-чуть раньше их».

В военные годы Винер исследует задачу движения самолета при зенитном обстреле. Позже она выльется в теорию прогнозирования, но американский ученый при­знается: «Когда я писал свою первую работу по теории прогнозирования, я не предполагал, что некоторые из основных математических идей этой статьи были уже опубликованы до меня. Но вскоре я обнаружил, что незадолго до второй мировой войны советский матема­тик Колмогоров напечатал небольшую, но очень важную заметку, посвященную этой теме... У меня нет никакой уверенности в том, что Колмогоров не нашел также и известных мне возможностей применения этих мето­дов. .. За последние двадцать-тридцать лет почти ни разу ни один из нас не опубликовал какой-нибудь работы, чтобы очень скоро не появилась тесно связанная с ней работа другого на ту же тему».

И еще одно признание Винера, которое он однажды сделал журналистам: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать».

В 1954 году на первом послевоенном математическом конгрессе в Амстердаме А.Н.Колмогоров сделал доклад, посвященный одной из величайших проблем астрономии и классической механики – проблеме устойчивости Солнечной системы. Этот вопрос волновал всех исследователей с того самого момента, когда Ньютон вывел уравнения классической механики. В докладе на Амстердамском конгрессе А.Н.Колмогоров рассказал о разработанном им новом методе, который во многих случаях позволял решить рассматриваемую проблему. Метод Колмогорова был усовершенствован его учеником В.Н.Арнольдом и крупным немецким математиком Ю.Мозером и получил название КАМ-теории, которая по праву считается одним из крупнейших достижений математики XX века. На протяжении почти полувека А.Н.Колмогоров был общепризнанным лидером в теории вероятностей. Вместе с А.Я.Хинчиным и многими своими учениками он завершил построение классического этапа теории вероятностей, начала которой были заложены Я.Бернулли, Лапласом и П.Л.Чебышевым. Затем он разработал аксиоматическую базу теории вероятностей (это достижение А.Н.Колмогорова, пожалуй, более всего известно), создал теорию так называемых марковских процессов, у истоков которой стояли Эйнштейн, Смолуховский и другие выдающиеся физики.

Помимо математики, где ему принадлежат классические достижения не менее чем в двух десятках областей, Андрей Николаевич добился выдающихся результатов в физике, механике, геофизике, океанологии, теории стрельбы; с большим интересом и успехом он занимался проблемами биологии и стиховедения

24 сентября 1956 г. на Филологическом факультете МГУ начал работать семинар «Некоторые применения математических методов исследования в языкознании» — первый семинар по математической лингвистике в СССР. При открытии семинара, его участникам были предложены мною два учебных задания, авторство которых принадлежало Колмогорову: дать строгое определение понятия падежа и дать строгое определение понятия ямба. Оба эти задания явились следствием бесед В. А. Успенского с Колмогоровым, сочувственно отнёсшимся как к созданию подобного семинара, так и к математизации филологических исследований вообще.

Истоки интереса Колмогорова к теории стиха таковы. Прежде всего, это его широкие общегуманитарные и, в частности, литературные интересы. Отсюда — интерес к стихам. Далее, его стремление к научному анализу явления, к систематизации понятий. Отсюда — интерес к стиховедению, возникший с молодости, в каковой он, читал работы сперва Андрея Белого, а затем и Шенгели, и Томашевского.

Как сказал В. А. Успенский: «Высший уровень научного анализа и систематизации — это математизация. Математизация отнюдь не сводится к выражению явлений в числах, таблицах и графиках. Числа, таблицы и графики могут вообще отсутствовать. Главное в математизации — это создание такого описания явления, которое было бы безупречным с логической точки зрения, а математика выступает здесь в роли оценщика (и одновременно идеала) степени логической безупречности. Математизации легче всего поддается метрический аспект стихосложения».2 Отсюда — интерес Колмогорова к тому разделу стиховедения, который называется метрика и ритмика. Ввиду того, что из всех разделов стиховедения именно метрика и ритмика была наиболее продвинута в направлении формализации, отсутствие должного порядка в её основных понятиях могло быть обнаружено достаточно быстро. Оно и было обнаружено Колмогоровым, хотя он, по скромности, вряд ли бы согласился с такой формулировкой; скорее он сказал бы, что лишь выразил в явной форме общеизвестные представления.

Числам, таблицам и графикам Андрей Николаевич также не был чужд. Он только полагал, что им непременно должно предшествовать чёткое описание подсчитываемых явлений. Колмогоров был одним из классиков статистики. Приложение методов математической статистики к явлениям речи — в частности, к явлениям стихотворной речи — не могло его не интересовать.

В конце пятидесятых стиховедческие интересы Колмогорова сплелись с его занятиями кибернетикой. И сложение стихов (как процесс), и стихосложение (как способ организации текста, возникающего в результате такого процесса) стало возможным рассматривать под углом зрения кибернетики и даже в качестве объекта изучения последней.

В начале шестидесятых Андрей Николаевич приступил к созданию последнего из своих математических шедевров — к созданию колмогоровской теории сложности, называемой сейчас теорией колмогоровской сложности (the theory of Kolmogorov complexity). Эта теория позволяет оценивать уровень сложности тех или иных объектов, прежде всего текстов (т. е. конечных цепочек букв). Колмогорова интересовал, в частности, вопрос о сложности литературных текстов, в том числе о том, какая доля сложности приходится на содержание текста, а какая — на те или иные литературные приёмы; литературные же приёмы — такие как рифма, метр и т. п. — легче всего формализуются и вычленяются в поэзии.

2. В. А. Успенский. Предварение для читателей «НЛО» к семиотическим посланиям А. Н. Колмогорова. «НЛО», 1997 г., № 24, ст. 142.

Остаётся выразить сожаление, что стиховедческие исследования Колмогорова остались опубликованными лишь в журналах и сборниках и всё ещё не изданы отдельной книгой. А. Н. Ширяев так подытоживает эти исследования Колмогорова:

«По инициативе А. Н. Колмогорова была проведена большая работа по пересмотру и уточнению результатов, полученных известными иследователями стиха А. Белым, Б. Томашевским, Г. Шенгели, К. Тарановским, Р. Якобсоном и другими. Основные результаты, полученные в этом направлении А. Н. Колмогоровыми его учениками и сотрудниками, можно сформулировать следующим образом: выявление метрических законов, классификация и статистика ритмических вариаций метра, анализ «остаточной» энтропиии ее оценка. Получена оценка «остаточной» энтропии и дан расчет «затрат энтропии» на отдельные приемы звуковой выразительности стиха». 3

А. Н. Колмогоров является крупнейшим современным ки­бернетиком. Всему миру известны его работы по применению научного математического анализа к поэтическим произведе­ниям художественной литературы. В области кибернетики им высказано много интересных мыслей, догадок и гипотез. В частности, ему принадлежит следующая весьма смелая мысль:

« Принципиальная возможность создания полноценных живых существ, построенных на дискретных цифровых механизмах переработки информации и управления, не противоречит прин­ципам материалистической диалектики».4

Колмогоров был почётный член Американского метеорологического общества. Его портрет мы находим в начинающейся с Архимеда галерее портретов создателей классической механики. В известной хрестоматии Ван Хейеноорта «От Фреге до Гёделя» собраны статьи с 1879 по 1931 г., определившие структуру математической логики; из отечественных авторов в хрестоматии представлен лишь Колмогоров: мы находим здесь английский перевод его статьи, завершённой им 30 сентября 1925 г., т.е. в 22-летнем возрасте. Дважды, в 1969 и 1971 гг., Колмогоров принимал участие (и осуществлял функции научного руководителя) в многомесячных

  1. В. А. Успенский. Предварение для читателей «НЛО» к семиотическим посланиям А. Н. Колмогорова. «НЛО», 1997 г., № 24, ст. 156.

  2. А. Б. Сосинский. Беседа с А. Н. Колмогоровым. «Квант», 1983 г., № 4, ст. 5.

океанографических плаваниях на научно-исследовательском судне «Дмитрий Менделеев»; плавание 1971 г. было даже кругосветным. А понятие падежа по Колмогорову хорошо известно грамматистам.

От общения с Колмогоровым возникало ни с чем не сопоставимое ощущение непосредственного соприкосновения с гением.

В конце своей творческой жизни Андрей Николаевич провозгласил начала грандиозной программы по осмыслению единства детерминированных и хаотических явлений: мир един – большинство детерминированных явлений, обладающих определенной неустойчивостью, начинают вести себя как случайные, и наоборот, случайные явления подчиняются строгим законам. В основе нового осмысления лежит понятие сложности: сложно описываемое детерминированное явление ведет себя как случайное. В этой концепции соединились фактически все направления его научных поисков: и его исследования в теории функций, с которых он начинал и где достиг первого большого успеха, и его труды в области математической логики, теории информации, теории автоматов, теории аппроксимации, динамических систем, классической механики, теории турбулентности и, разумеется, теории вероятностей. Таким образом, творческая биография А.Н.Колмогорова предстает перед нами общностью идей, теорий и результатов, соединенных между собой единым философским и естественнонаучным замыслом.

УСПЕХИ В ПЕДАГОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

Андрей Николаевич был счастлив в своих учениках. Он создал выдающуюся научную школу. Большинство его учеников стало лидерами своих научных направлений, продолжая дело своего учителя. Много раз пытались составить полный список его учеников, но эта затея была невыполнимой – хотя бы потому, что сама задача была неформальной. В 1963 году, к 60-летию Андрея Николаевича, на его кафедре (теории вероятностей) была нарисована огромная "архимедова спираль" из его учеников (сам А.Н.Колмогоров составлял "ядро"). Сколько бы ни включали в этот список-спираль фамилий, всегда оказывалось, что есть еще ученики Андрея Николаевича и ученики учеников. На стр. 134-135 книги "Колмогоров в воспоминаниях" приводится, как казалось составителю, достаточно полный список учеников Колмогорова, но всё идут и идут дополнения. Вот только академики и членкоры: И.В. Арнольд, А.А.Боровков, И.М.Гельфанд, А.Н.Мальцев, М.Д.Миллионщиков, В.С.Михалевич, С.М.Никольский, А.М.Обухов, Ю.В.Прохоров, Я.Г.Синай, Б.В. Гнедиенко, С.Х.Сираждинов, В.А.Статулявичюс, Л.Н.Большев, А.С.Монин, Б.А.Севастьянов, А.Н.Ширяев.

Характеристики

Тип файла
Документ
Размер
288,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6532
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее