49426 (666262), страница 2

Файл №666262 49426 (Частотные характеристики линейных систем управления) 2 страница49426 (666262) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Впрочем, все сказанное о кратных корнях имеет отношение и к простым корням. Существуют вполне достаточно эффективные способы вычисления коэффициентов при определении конкретного выражения собственных колебаний, но мы опустим их, изложив самые простые, которых достаточно для демонстрационных примеров.

Выражение (6) является общим решением уравнения (5), но собственные колебания соответствующей системы описываются выражением (6) при конкретных значениях коэффициентов Ci. Они могут быть определены многими способами. Чаще всего эти постоянные определяются из начальных условий. Начальными условиями (для собственных колебаний) являются значения процесса x(t) его производных в нулевой момент времени. Дифференцируя выражение (6) в нулевой момент времени можно получить систему уравнений для определения постоянных Ci.

(10)

Данная система уравнений имеет специальный вид, который позволяет получить ее решение сравнительно простыми методами. Однако при первом знакомстве с обсуждаемой проблемой можно иметь в виду (применять) общие методы решения систем линейных уравнений.

Частное решение уравнения (3) при определенной правой части, а точнее при определенном выражении внешнего воздействия y(t), можно интерпретировать как результат преобразования этого воздействия системой, описываемой уравнением (3).

Нахождение частного решения нередко следует следующей схеме. Предполагается, что при заданном внешнем воздействии y(t), частное решение x(t) или, что то же самое, выходная координата системы, описываемой данным дифференциальным уравнением, имеет определенный с точностью до (значений) параметров вид. Подставляя в дифференциальное уравнение (определенное) значение внешнего воздействия и предполагаемого частного решения, получим уравнение относительно параметров. Если из полученного уравнения параметры могут быть определены, то частное решение или, что то же самое, реакция системы на данное внешнее воздействие определено.

Приступая к решению этого вопроса, мы имеем в ввиду не столько определение самого частного решения по терминологии теории дифференциальных уравнений и даже не определении выходного процесса по заданному входному. Хотя это достаточно важный для теории автоматического управления вопрос, основной целью настоящего раздела является введение центрального для классической теории понятия частотной характеристики и, далее, передаточной функции. Затем, с использованием этих понятий можно обсудить вопросы определения выходного процесса по заданному входному спектральными методами.

Рассмотрим частный случай гармонического внешнего воздействия. Известно, что суммой гармоник можно представить сигнал практически произвольной формы. По основному свойству линейных систем – принципу суперпозиции – зная реакцию системы на произвольное гармоническое воздействие, нетрудно определить реакцию на произвольное воздействие. Действительно, реакция системы на сумму воздействий равна сумме реакций на каждое воздействие в отдельности. Самой простой составляющей (слагаемым) произвольного входного воздействия является гармоническое воздействие в виде синусоидального или косинусоидального. Это справедливо, если иметь в виду функции действительного аргумента. Однако сами гармонические функции раскладываются на еще более простые, на экспоненциальные.

Итак, пусть на входе системы действует гармоническое воздействие

, (11)

которое является самой простой составляющей (слагаемым) произвольного входного воздействия. Представим его в виде суммы двух экспонент

,

г де

, , (12)

и найдем реакцию на каждое слагаемое в отдельности.

Итак, пусть . Предположим, соответствующее решение имеет вид:

. (13)

Подставим и из выражений (12) и (13) в уравнение (3). Получим

.

Отсюда

. (14)

Таким образом, предположение о возможности представления нахождения выходного процесса в виде (13) оправдалось. Более того, дополнительно определен неизвестный множитель , фигурирующий в предполагаемом решении.

Если сравнить выражения входного и выходного процессов и , представленные выражениями (12) и (13) в рассматриваемом частном случае, то можно убедиться, полученное выражение

, действительно, можно рассматривать как множитель, на который надо умножить входное воздействие, чтобы получить выходное.

Этот комплексный коэффициент усиления называется частотной характеристикой системы.

Частотная характеристика системы может рассматриваться и как комплексная функция частоты. Как и всякая функция комплексного аргумента, она может быть представлена действительной и мнимой частями, модулем и аргументом:

,

где:

- действительная частотная характеристика;

- мнимая частотная характеристика;

- амплитудная частотная характеристика;

- фазовая частотная характеристика.

Пусть теперь . Эта функция отличается от ранее рассмотренной функции только знаком частоты. Частотная характеристика является комплексным коэффициентом усиления для любой частоты, в том числе и отрицательной. Поэтому для определения соответствующего выходного воздействия достаточно сменить знак частоты в выражении (13)

. (15)

Если входной процесс равен сумме этих воздействий (11), то выходной процесс равен сумме соответствующих выходных процессов (13) и (15).

Проделав ряд элементарных преобразований

(16)

получим, что при гармоническом входном воздействии выходной процесс также гармонический, амплитуда которого в раз больше амплитуды входного воздействия, а фаза больше фазы входного воздействия на .

Здесь использовано свойство четности амплитудной частотной характеристики, которое легко следует из выражений связи между различными ее составляющими

, ,

, (17)

Не трудно убедиться, что соотношения между различными частотными характеристиками системы такие же, как и между различными составляющими комплексного числа.

Из всего сказанного следует, что если входной процесс представлен рядом Фурье, то для определения ряда Фурье выходного процесса достаточно изменить описанным выше образом амплитуды и фазы входного процесса.

Еще проще определяется преобразование Фурье выходного процесса по преобразованию Фурье входного процесса . Как не трудно показать,

. (17)

Для этого только достаточно вспомнить формальное определение и содержательный смысл преобразования Фурье. С формальной точки зрения для любой абсолютно интегрируемой функции , т.е. функции для которой

,

существует прямое и обратное преобразования Фурье

, .

Последнее выражение и позволяет трактовать преобразование Фурье некоторой функции времени в виде суммы гармоник с комплексными «амплитудами» . Преобразование каждой такой гармоники сводится к умножению ее «амплитуды» на комплексный коэффициент усиления , как показывает выражение (17).

Преобразование Фурье обладает одним существенным с теоретической точки зрения недостатком – его нельзя применить к функциям, которые не являются абсолютно интегрируемыми. Таких функций достаточно много, чтобы в полной мере ощутить неудобство данного ограничения. Например, функция – константа, сохраняющая постоянное ненулевое значение сколь угодно долго, не является абсолютно интегрируемой. Вместе с тем, такая функция простейшим образом описывает постоянное воздействие.

Этого недостатка лишено преобразование Лапласа, которое широко используется в классической теории управления. Оно является обобщением преобразования Фурье, на его основе дается определение центрального понятия классической теории управления, понятия передаточной функции. Последняя является обобщением только что введенного понятия частотной характеристики в той же мере, в какой преобразование Лапласа является обобщением преобразования Фурье.

Эти понятия настолько тесно связаны между собой, что иногда их не различают. Например, не смотря на то, что центральным понятием классической теории автоматического управления является, как у же отмечалось, понятие передаточной функции, методы этой теории называются частотными. На наш взгляд, это происходит потому, что использование именно преобразования Лапласа связано с вычислительной стороной дела, но как только дело доходит до физической интерпретации результатов, полученных с помощью передаточных функций, переходят к частотным характеристикам.

ЛИТЕРАТУРА

  1. Мирошник И.В. Теория автоматического управления. Линейные системы. - СПб.: Питер, 2005.

  2. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых Знаний, 2001.

  3. Методы классической и современной теории автоматического управления в 3-х т. Т.1: Анализ и статистическая динамика систем автоматического управления / Под ред. Н.Д. Егупова. – Изд. МГТУ им. Н.Э. Баумана, 2000.

Характеристики

Тип файла
Документ
Размер
1,16 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6644
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее