47665 (665875), страница 2

Файл №665875 47665 (Моделювання та методи обробки кардіоінтервалограм при фізичних навантаженнях) 2 страница47665 (665875) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Виходячи із необхідності систематизації та впорядкування відомостей фізичного, математичного та технічного характеру, що стосуються моделювання та аналізу КІГ, автором окреслено нову науково-технічну область, шляхом введення поняття кардіоінтервалометрії. Кардіоінтервалометрія – це область кардіометрії, що охоплює широкий спектр проблем технічного та фізико-математичного характеру (а не медико-біологічного), науково-технічними проблемами якої є: побудова математичних моделей, вибір діагностичних ознак, обґрунтування алгоритмів обробки КІГ для проведення діагностики адаптивно-регулятивних механізмів організму; створення алгоритмів функціонування систем діагностики за КІГ; створення методів комп’ютерного імітаційного моделювання КІГ та її перетворень в технічних системах; розробка інформаційно-вимірювальних діагностичних систем за КІГ.

Проведений порівняльний аналіз відомих математичних моделей КІГ та критичний аналіз можливостей їх застосування для моделей КІГ при фізичних навантаженнях показав, що існуючі моделі мають вагомі недоліки, а тому існує об’єктивна необхідність побудови нової математичної моделі КІГ з урахуванням фізичних навантажень та розробки методів її обробки і вибору діагностичних ознак.

Враховуючи специфіку задач кардіоінтервалометрії та особливості зміни тривалостей кардіоінтервалів при фізичних навантаженнях, сформульовано вимоги до математичної моделі КІГ, що запропонована в дисертаційній роботі.

У другому розділі ґрунтуючись на особливостях формування, факті нестаціонарного (перехідного) характеру КІГ при фізичних навантаженнях (рис. 2), а також властивій стохастичності кардіоінтервалів, побудовано нову математичну модель КІГ при фізичних навантаженнях у вигляді суми дискретної детермінованої функції та стаціонарної лінійної випадкової послідовності. Розглянуто характеристики запропонованої математичної моделі. Запропоновано на основі розробленої моделі як діагностичні ознаки для прийняття рішень щодо адаптивно-регулятивних можливостей організму людини використати імовірнісні характеристики КІГ: математичне сподівання, кореляційну функцію та щільність розподілу.

Як показали результати проведених досліджень, при дії на організм людини фізичного навантаження тривалості кардіоінтервалів починають зменшуватися до певного рівня, а потім в процесі зняття фізичного навантаження зростають протягом деякого часу до попереднього рівня (стан відновлення). Це явище вимагає врахування нестаціонарності, перехідного характеру у величинах тривалостей кардіоінтервалів в математичній моделі КІГ при фізичних навантаженнях.

Враховуючи наведені вище міркування, математичну модель КІГ при фізичних навантаженнях подано у вигляді

(1)

де – деяка дискретна детермінована функція, яка відображає динаміку зміни (тренд) тривалостей кардіоінтервалів КІГ;

– стаціонарна лінійна випадкова послідовність, що враховує випадковий характер змін (флуктуацій) тривалостей кардіоінтервалів КІГ та яку подано у вигляді

(2)

де – невипадкова функція (ядро зображення (2)) двох дискретних аргументів, відносно якої виконується нерівність

,

– породжуючий білий шум з дискретним часом, математичне сподіванням якого рівне нулю.

Зауважимо, що у випадку реєстрації КІГ у стані спокою (без фізичних навантажень), її моделлю також буде випадковий процес (1) причому .

Діагностичними ознаками при визначенні адаптивно-регулятивних можливостей організму людини є ймовірнісні характеристики (математичне сподівання, кореляційна функція та щільність розподілу) процесу . Так, математичне сподівання процесу (1) рівне:

(3)

але оскільки , то

(4)

Отже, для визначення математичного сподівання достатньо знайти функцію .

Кореляційна функція процесу (1)

(5)

Тобто, кореляційна функція випадкового процесу (1) рівна кореляційній функції стаціонарної лінійної випадкової послідовності .

Одновимірна функція щільності розподілу стаціонарної компоненти не змінюється при зсуві за аргументом , що можна подати так:

. (6)

Таким чином, діагностичними ознаками при проведенні діагностики стану адаптивно-регулятивних можливостей організму при фізичних навантаженнях на основі запропонованої в роботі моделі будуть математичне сподівання, що рівне детермінованій функції f(k), кореляційна функція та функція щільності розподілу стаціонарної компоненти моделі (1).

У третьому розділі, обґрунтовано методи статистичного оцінювання діагностичних ознак, а саме, коефіцієнтів розкладу оцінки математичного сподівання та оцінки кореляційної функції КІГ у ряди за ортогональними поліномами Чебишева, а також параметрів кривих Пірсона для оцінювання щільності розподілу, що дало можливість зменшити (оптимізувати) розмірність вектора діагностичних ознак.

Виходячи із вище запропонованих діагностичних ознак, наведено методи їх статистичного оцінювання.

Оскільки статистичне оцінювання математичного сподівання здійснюється тільки за однією реалізацією КІГ, а КІГ при фізичних навантаженнях не є стаціонарною, то оцінювання математичного сподівання, що дорівнює детермінованій складовій моделі (1), здійснено на основі методу найменших квадратів.

У результаті оцінювання отримано послідовність значень, обсяг яких дорівнює кількості відліків КІГ. Зменшення розмірності діагностичного простору здійснено шляхом наближеного представлення функції у вигляді ряду

, (7)

де – спектральні коефіцієнти функції в ортогональному базисі .

У дисертаційній роботі за діагностичні ознаки прийнято декілька перших коефіцієнтів із сукупності ортогонального розкладу оцінки математичного сподівання в ряди за ортогональними поліномами дискретного аргументу Чебишева, Кравчука, Лагера та за дискретними тригонометричними функціями. На основі аналізу результатів розкладу оцінки математичного сподівання КІГ в ряди за цими ортогональними базисами, виходячи з критерію мінімуму кількості членів ряду, які складають не менше 95% від повної енергії сигналу, встановлено, що за цим критерієм найменша кількість коефіцієнтів (3-4 коефіцієнти ряду) потрібно при розкладі в ряд за ортогональними поліномами Чебишева. Отже, діагностичними ознаками на основі розкладу оцінки математичного сподівання в ряди за дискретними ортогональними поліномами вибрано коефіцієнти ряду поліномів Чебишева.

Враховуючи отримані результати розкладу оцінки математичного сподівання, математичну модель (1) уточнено і подано у вигляді:

(8)

де – коефіцієнти ряду Чебишева;

та – узагальнені коефіцієнти, що дорівнюють та

– узагальнений степінь.

У дисертаційній роботі побудовано гістограми стаціонарної компоненти (2) математичної моделі КІГ при фізичних навантаженнях та здійснено апроксимацію щільності розподілу КІГ системою кривих Пірсона, які визначаються як розв’язок диференціального рівняння

, (9)

де , - дійсні параметри, що повністю характеризують форму (тип) кривої розподілу. Для характеристики стану адаптивно-регулятивних можливостей організму запропоновано використовувати нові діагностичні ознаки – параметри диференціального рівняння (9). Приклад побудови кривої Пірсона наведено на рис. 4.

Враховуючи ергодичність послідовності (2), статистичне оцінювання кореляційної функції здійснювалось згідно виразу

. (10)

Для зменшення діагностичного простору здійснено розклад оцінки кореляційної функції в ряд

, (11)

де - спектральні коефіцієнти кореляційної функції в ортогональному базисі .

В дисертаційній роботі як діагностичні ознаки за оцінкою кореляційної функції розглянуто коефіцієнти ортогональних розкладів цих оцінок в ряди за ортогональними поліномами дискретного аргументу Кравчука, Лагера, Чебишева та за дискретними тригонометричними функціями. Враховуючи енергетичний критерій, як і у випадку розкладу оцінки математичного сподівання в ряди, встановлено, що для представлення оцінки кореляційної функції стаціонарної компоненти (2) достатньо 15 перших коефіцієнтів ряду Чебишева. Таким чином, запропоновано як діагностичні ознаки за оцінкою кореляційної функції використовувати коефіцієнти ряду поліномів Чебишева.

Обгрунтовано метод прийняття рішень при діагностиці адаптивно-реглятивних механізмів організму за КІГ на основі аналізу коефіцієнтів розкладу оцінки математичного сподівання та оцінки кореляційної функції у ряди за ортогональними поліномами Чебишева, коефіцієнтів кривих Пірсона на основі критерію Неймана-Пірсона та критерію Байєса.

У четвертому розділі розглянуто питання комп’ютерного імітаційного моделювання КІГ на базі лінійних випадкових послідовностей. Проведено серію експериментів по моделюванню КІГ при фізичних навантаженнях. Розглянуто питання точності імітаційного моделювання. Розроблено систему комп’ютерних програм для проведення імітаційних експериментів та обробки кардіоінтервалограм при фізичних навантаженнях на основі запропонованих у дисертаційній роботі моделі та методів.

Алгоритм комп’ютерного моделювання КІГ полягає в моделюванні нестаціонарного випадкового процесу (1), що зводиться до імітації детермінованої складової , що обчислюється на основі поліномів Чебишева за визначеними на основі спектрального розкладу оцінки математичного сподівання в ряд за поліномами Чебишева коефіцієнтами та моделювання стаціонарної лінійної випадкової послідовності (2).

Алгоритм моделювання реалізацій дискретної стаціонарної лінійної послідовності (2) полягає в наступному:

Характеристики

Тип файла
Документ
Размер
1,01 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее