TP Report (664949)

Файл №664949 TP Report (Хеширование)TP Report (664949)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Министерство Образования РФ

Воронежский государственный университет

Факультет Компьютерных наук

Кафедра программирования и информационных технологий

Курсовая работа

по курсу «Технологии программирования» по теме

«Хеширование»

Выполнил: студент 3его курса

Шадчнев Евгений

Проверил: доцент каф. ПиИТ

Хлебостроев Виктор Григорьевич

Воронеж 2003

Содержание

Введение 3

Хеш-функции 4

Метод деления 4

Метод умножения (мультипликативный) 5

Динамическое хеширование 5

Расширяемое хеширование (extendible hashing) 7

Функции, сохраняющие порядок ключей (Order preserving hash functions) 8

Минимальное идеальное хеширование 8

Разрешение коллизий 10

Метод цепочек 10

Открытая адресация 10

Линейная адресация 11

Квадратичная и произвольная адресация 11

Адресация с двойным хешированием 11

Удаление элементов хеш-таблицы 12

Применение хеширования 13

Хеширование паролей 13

Заключение 15

Приложение (демонстрационная программа) 15

Список литературы: 16



Введение

С хешированием мы сталкиваемся едва ли не на каждом шагу: при работе с браузером (список Web-ссылок), текстовым редактором и переводчиком (словарь), языками скриптов (Perl, Python, PHP и др.), компилятором (таблица символов). По словам Брайана Кернигана, это «одно из величайших изобретений информатики». Заглядывая в адресную книгу, энциклопедию, алфавитный указатель, мы даже не задумываемся, что упорядочение по алфавиту является не чем иным, как хешированием.

Хеширование есть разбиение множества ключей (однозначно характеризующих элементы хранения и представленных, как правило, в виде текстовых строк или чисел) на непересекающиеся подмножества (наборы элементов), обладающие определенным свойством. Это свойство описывается функцией хеширования, или хеш-функцией, и называется хеш-адресом. Решение обратной задачи возложено на хеш-структуры (хеш-таблицы): по хеш-адресу они обеспечивают быстрый доступ к нужному элементу. В идеале для задач поиска хеш-адрес должен быть уникальным, чтобы за одно обращение получить доступ к элементу, характеризуемому заданным ключом (идеальная хеш-функция). Однако, на практике идеал приходится заменять компромиссом и исходить из того, что получающиеся наборы с одинаковым хеш-адресом содержат более одного элемента.

Термин «хеширование» (hashing) в печатных работах по программированию появился сравнительно недавно (1967 г., [1]), хотя сам механизм был известен и ранее. Глагол «hash» в английском языке означает «рубить, крошить». Для русского языка академиком А.П. Ершовым [2] был предложен достаточно удачный эквивалент — «расстановка», созвучный с родственными понятиями комбинаторики, такими как «подстановка» и «перестановка». Однако он не прижился.

Как отмечает Дональд Кнут [3], идея хеширования впервые была высказана Г.П. Ланом при создании внутреннего меморандума IBM в январе 1953 г. с предложением использовать для разрешения коллизий хеш-адресов метод цепочек. Примерно в это же время другой сотрудник IBM – Жини Амдал – высказала идею использования открытую линейную адресацию. В открытой печати хеширование впервые было описано Арнольдом Думи (1956), указавшим, что в качестве хеш-адреса удобно использовать остаток от деления на простое число. А. Думи описывал метод цепочек для разрешения коллизий, но не говорил об открытой адресации. Подход к хешированию, отличный от метода цепочек, был предложен А.П. Ершовым (1957, [2]), который разработал и описал метод линейной открытой адресации. Среди других исследований можно отметить работу Петерсона (1957, [4]). В ней реализовывался класс методов с открытой адресацией при работе с большими файлами. Петерсон определил открытую адресацию в общем случае, проанализировал характеристики равномерного хеширования, глубоко изучил статистику использования линейной адресации на различных задачах. В 1963 г. Вернер Букхольц [6] опубликовал наиболее основательное исследование хеш-функций.

К концу шестидесятых годов прошлого века линейная адресация была единственным типом схемы открытой адресации, описанной в литературе, хотя несколькими исследователями независимо была разработана другая схема, основанная на неоднократном случайном применении независимых хеш-функции ([3], стр. 585). В течение нескольких последующих лет хеширование стало широко использоваться, хотя не было опубликовано никаких новых работ. Затем Роберт Моррис [5] обширный обзор по хешированию и ввел термин «рассеянная память» (scatter storage). Эта работа привела к созданию открытой адресации с двойным хешированием.

Далее будут рассмотрены основные виды хеш-функций и некоторые их модификации, методы разрешения коллизий, проблемы удаления элементов из хеш-таблицы, а также некоторые варианты применения хеширования.

Хеш-функции

Хеш-функция – это некоторая функция h(K), которая берет некий ключ K и возвращает адрес, по которому производится поиск в хеш-таблице, чтобы получить информацию, связанную с K. Например, K – это номер телефона абонента, а искомая информация – его имя. Функция в данном случае нам точно скажет, по какому адресу найти искомое. Пример с телефонным справочником иллюстрируется демонстрационной программой на прилагаемом компакт-диске.

Коллизия – это ситуация, когда h(K1) = h(K2), в то время как K1 ≠ K2. В этом случае, очевидно, необходимо найти новое место для хранения данных. Очевидно, что количество коллизий необходимо минимизировать. Методикам разрешения коллизий будет посвящен отдельный раздел ниже.

Хорошая хеш-функция должна удовлетворять двум требованиям:

  • ее вычисление должно выполняться очень быстро;

  • она должна минимизировать число коллизий.

Итак, первое свойство хорошей хеш-функции зависит от компьютера, а второе – от данных. Если бы все данные были случайными, то хеш-функции были бы очень простые (несколько битов ключа, например). Однако на практике случайные данные встречаются крайне редко, и приходится создавать функцию, которая зависела бы от всего ключа.

Теоретически невозможно определить хеш-функцию так, чтобы она создавала случайные данные из реальных неслучайных файлов. Однако на практике реально создать достаточно хорошую имитацию с помощью простых арифметических действий. Более того, зачастую можно использовать особенности данных для создания хеш-функций с минимальным числом коллизий (меньшим, чем при истинно случайных данных) [3].

Возможно, одним из самых очевидных и простых способов хеширования является метод середины квадрата, когда ключ возводится в квадрат и берется несколько цифр в середине. Здесь и далее предполагается, что ключ сначала приводится к целому числу, для совершения с ним арифметических операций. Однако такой способ хорошо работает до момента, когда нет большого количества нолей слева или справа. Многочисленные тесты показали хорошую работу двух основных типов хеширования, один из которых основан на делении, а другой на умножении. Впрочем, это не единственные методы, которые существуют, более того, они не всегда являются оптимальными.

Метод деления

Метод деления весьма прост – используется остаток от деления на M:

h(K) = K mod M

Надо тщательно выбирать эту константу. Если взять ее равной 100, а ключом будет случить год рождения, то распределение будет очень неравномерным для ряда задач (идентификация игроков юношеской бейсбольной лиги, например). Более того, при четной константе значение функции будет четным при четном K и нечетным - при нечетном, что приведет к нежелательному результату. Еще хуже обстоят дела, если M – это степень счисления компьютера, поскольку при этом результат будет зависеть только от нескольких цифр ключа справа. Точно также можно показать, что M не должно быть кратно трем, поскольку при буквенных ключах два из них, отличающиеся только перестановкой букв, могут давать числовые значения с разностью, кратной трем (см. [3], стр. 552). Приведенные рассуждения приводят к мысли, что лучше использовать простое число. В большинстве случаев подобный выбор вполне удовлетворителен.

Другой пример – ключ, являющийся символьной строкой С++. Хеш-функция отображает эту строку в целое число посредством суммирования первого и последнего символов и последующего вычисления остатка от деления на 101 (размер таблицы). Эта хеш-функция приводит к коллизии при одинаковых первом и последнем символах строки. Например, строки «start» и «slant» будут отображаться в индекс 29. Так же ведет себя хеш-функция, суммирующая все символы строки. Строки «bad» и «dab» преобразуются в один и тот же индекс. Лучшие результаты дает хеш-функция, производящая перемешивание битов в символах.

На практике, метод деления – самый распространенный [7].

Метод умножения (мультипликативный)

Для мультипликативного хеширования используется следующая формула:

h(K) = [M * ((C * K) mod 1)]

Здесь производится умножение ключа на некую константу С, лежащую в интервале [0..1]. После этого берется дробная часть этого выражения и умножается на некоторую константу M, выбранную таким образом, чтобы результат не вышел за границы хеш-таблицы. Оператор [ ] возвращает наибольшее целое, которое меньше аргумента.

Если константа С выбрана верно, то можно добиться очень хороших результатов, однако, этот выбор сложно сделать. Дональд Кнут (см. [3], стр. 553) отмечает, что умножение может иногда выполняться быстрее деления.

Мультипликативный метод хорошо использует то, что реальные файлы неслучайны. Например, часто множества ключей представляют собой арифметические прогрессии, когда в файле содержатся ключи {K, K + d, K + 2d, …, K + td}. Например, рассмотрим имена типа {PART1, PART2, …, PARTN}. Мультипликативный метод преобразует арифметическую прогрессию в приближенно арифметическую прогрессию h(K), h(K + d), h(K + 2d),… различных хеш-значений, уменьшая число коллизий по сравнению со случайной ситуацией. Впрочем, справедливости ради надо заметить, что метод деления обладает тем же свойством.

Частным случаем выбора константы является значение золотого сечения φ = (√5 - 1)/2 ≈ 0,6180339887. Если взять последовательность {φ}, {2φ}, {3φ},... где оператор { } возвращает дробную часть аргумента, то на отрезке [0..1] она будет распределена очень равномерно. Другими словами, каждое новое значение будет попадать в наибольший интервал. Это явление было впервые замечено Я. Одерфельдом (J. Oderfeld) и доказано С. Сверчковски (S. Świerczkowski) (см. [8]). В доказательстве играют важную роль числа Фибоначчи. Применительно к хешированию это значит, что если в качестве константы С выбрать золотое сечение, то функция будет достаточно хорошо рассеивать ключи вида {PART1, PART2, …, PARTN}. Такое хеширование называется хешированием Фибоначчи. Впрочем, существует ряд ключей (когда изменение происходит не в последней позиции), когда хеширование Фибоначчи оказывается не самым оптимальным [3].

Динамическое хеширование

Описанные выше методы хеширования являются статическими, т.е. сначала выделяется некая хеш-таблица, под ее размер подбираются константы для хеш-функции. К сожалению, это не подходит для задач, в которых размер базы данных меняется часто и значительно [9]. По мере роста базы данных можно

  • пользоваться изначальной хеш-функцией, теряя производительность из-за роста коллизий;

  • выбрать хеш-функцию «с запасом», что повлечет неоправданные потери дискового пространства;

  • периодически менять функцию, пересчитывать все адреса. Это отнимает очень много ресурсов и выводит из строя базу на некоторое время.

Существует техника, позволяющая динамически менять размер хеш-структуры [10]. Это – динамическое хеширование. Хеш-функция генерирует так называемый псевдоключ (“pseudokey”), который используется лишь частично для доступа к элементу. Другими словами, генерируется достаточно длинная битовая последовательность, которая должна быть достаточна для адресации всех потенциально возможных элементов. В то время, как при статическом хешировании потребовалась бы очень большая таблица (которая обычно хранится в оперативной памяти для ускорения доступа), здесь размер занятой памяти прямо пропорционален количеству элементов в базе данных. Каждая запись в таблице хранится не отдельно, а в каком-то блоке (“bucket”). Эти блоки совпадают с физическими блоками на устройстве хранения данных. Если в блоке нет больше места, чтобы вместить запись, то блок делится на два, а на его место ставится указатель на два новых блока.

Задача состоит в том, чтобы построить бинарное дерево, на концах ветвей которого были бы указатели на блоки, а навигация осуществлялась бы на основе псевдоключа. Узлы дерева могут быть двух видов: узлы, которые показывают на другие узлы или узлы, которые показывают на блоки. Например, пусть узел имеет такой вид, если он показывает на блок:

Zero

Null

Bucket

Указатель

One

Null

Если же он будет показывать на два других узла, то он будет иметь такой вид:

Zero

Адрес a

Bucket

Null

One

Адрес b

Вначале имеется только указатель на динамически выделенный пустой блок. При добавлении элемента вычисляется псевдоключ, и его биты поочередно используются для определения местоположения блока. Например (см. рисунок), элементы с псевдоключами 00… будут помещены в блок A, а 01… - в блок B. Когда А будет переполнен, он будет разбит таким образом, что элементы 000… и 001… будут размещены в разных блоках.

Расширяемое хеширование (extendible hashing)

Расширяемое хеширование близко к динамическому. Этот метод также предусматривает изменение размеров блоков по мере роста базы данных, но это компенсируется оптимальным использованием места. Т.к. за один раз разбивается не более одного блока, накладные расходы достаточно малы [9].

Вместо бинарного дерева расширяемое хеширование предусматривает список, элементы которого ссылаются на блоки. Сами же элементы адресуются по некоторому количеству i битов псевдоключа (см. рис). При поиске берется i битов псевдоключа и через список (directory) находится адрес искомого блока. Добавление элементов производится сложнее. Сначала выполняется процедура, аналогичная поиску. Если блок неполон, добавляется запись в него и в базу данных. Если блок заполнен, он разбивается на два, записи перераспределяются по описанному выше алгоритму. В этом случае возможно увеличение числа бит, необходимых для адресации. В этом случае размер списка удваивается и каждому вновь созданному элементу присваивается указатель, который содержит его родитель. Таким образом, возможна ситуация, когда несколько элементов показывают на один и тот же блок. Следует заметить, что за одну операцию вставки пересчитываются значения не более, чем одного блока. Удаление производится по такому же алгоритму, только наоборот. Блоки, соответственно, могут быть склеены, а список – уменьшен в два раза.

Итак, основным достоинством расширяемого хеширования является высокая эффективность, которая не падает при увеличении размера базы данных. Кроме этого, разумно расходуется место на устройстве хранения данных, т.к. блоки выделяются только под реально существующие данные, а список указателей на блоки имеет размеры, минимально необходимые для адресации данного количества блоков. За эти преимущества разработчик расплачивается дополнительным усложнением программного кода.

Функции, сохраняющие порядок ключей (Order preserving hash functions)

Существует класс хеш-функций, которые сохраняют порядок ключей [11]. Другими словами, выполняется

Характеристики

Тип файла
Документ
Размер
204 Kb
Материал
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6899
Авторов
на СтудИзбе
268
Средний доход
с одного платного файла
Обучение Подробнее