SETI (664690), страница 5
Текст из файла (страница 5)
- управления каналами удаленного доступа («не передавать файлы по каналам в рабочее время»);
- повышения качества обслуживания («считать транзакции более приоритетными, чем обмен файлами»). Большинство сетей представляют собой смесь различных технологий - Ethernet, Token Ring или FDDI, кроме того, могут использоваться Х.25, Frame Relay или выделенные линии. Поэтому маршрутизаторы не только передают пакеты между сетями, но и выполняют роль конверторов, осуществляя трансляцию различных форматов пакетов. Более того, большинством сетей применяются маршрутизируемые (routable) и немаршрутизируемые (nonroutable) протоколы. Такие протоколы, как IP, IPX, DECnet, являются маршрутизируемыми, поскольку они используют иерархическую систему адресации, тогда как, например, протокол LAT - только МАС-адреса. Таким образом, большинство современных маршрутизаторов поддерживают многопротокольную маршрутизацию и одновременно обеспечивают функции прозрачного моста.
Благодаря структуризации и возможностям управления «широковещательным» трафиком многопротокольные маршрутизаторы позволяют расширять сети далеко за пределы возможностей, предоставляемых мостами. Однако любое преимущество имеет свою цену - каждый порт маршрутизатора и каждая станция в сети должны быть тщательно сконфигурированы с корректными сетевыми адресами. Некорректные адреса могут привести к потере пакетов, циклическим путям и другим проблемам. Но справедливо и то, что в динамично развивающейся организации поддерживать конфигурацию сети так, чтобы все было абсолютно корректно, практически невозможно. Поэтому в растущих сетях администрирование адресов становится одним из самых труднопреодолимых барьеров.
Есть и еще одна проблема, связанная с использованием маршрутизаторов: при передаче пакетов между сетями возникает временная задержка, а стоимость порта у маршрутизаторов значительно превосходит стоимость портов концентраторов.
Традиционные архитектурные решения
В настоящее время на сетевом рынке доминирует несколько архитектурных решений расширения локальных сетей. Архитектура Collapsed backbone, выполняемая на основе центрального высокопроизводительного маршрутизатора, предпочтительна для организации локальной сети зданий. LAN-based distributed backbone применяется для объединения локальных сетей зданий. Hybrid mesh и star distributed сети широко используются для организации болоших локальных сетей.
Все современные архитектуры строятся вокруг традиционной модели локальной вычислительной сети. Они обеспечивают недорогой и эффективный транспорт для приложений «клиент/сервер» и совместной работы с существующими сетевыми операционными системами. Но популярность сетей привела к росту числа пользователей и более интенсивному их использованию, одновременно появились и новые приложения, все это в целом породило необходимость в нечто большем, что традиционные архитектуры обеспечить не могут.
Распределенная сетевая магистраль (Distributed backbone)
Самой ранней формой построения межсетевых соединений была архитектура Distributed backbone (распределенная сетевая магистраль). При таком построении сети концентраторы собирают все кабельные соединения по этажам, организуя там широковещательные сети, а соединения между этажами строятся или по технологии локальной вычислительной сети, или на базе маршрутизаторов. Межэтажное соединение может быть выполнено либо по той же технологии, что и локальные сети этажей (скажем, 10Base-T), либо по технологии FDDI, обеспечивающей скорость 100 Мбит/с.
Каждый сегмент сети представляет собой отдельную самостоятельную подсеть. При прохождении пакетов между сегментами они должны преодолеть как минимум один маршрутизатор. Следовательно, серверы могут быть разбросаны по зданию и подключены к соответствующим сетевым сегментам так, что их основным пользователям не грозят задержки, вносимые маршрутизаторами.
Основное преимущество такой архитектуры - надежность межсетевого обмена. Наличие большого числа маршрутизаторов обеспечивает при выходе из строя одного из них бесперебойную работу всех сегментов, за исключением непосредственно подключенного к отказавшему маршрутизатору. Однако архитектура распределенной сетевой магистрали ведет к снижению общей производительности сети. Так, при работе с данными, расположенными на сервере, подключенном к другому сегменту, клиент встретит на пути уже два маршрутизатора, что приведет к соответствующим потерям в скорости. Разброс маршрутизаторов по зданию порождает сложности в обслуживании кабельной системы и переконфигурации сети.
Сосредоточенная сетевая магистраль (Collapsed backbone)
Сети с этой архитектурой устраняют некоторые недостатки сетей с распределенной магистралью. Как и в предыдущем случае, локальные сети этажей (сегменты) образованы концентраторами, обеспечивающими их центральный мониторинг и управление. Все концентраторы подключены к единственному центральному маршрутизатору. «Сосредоточение» магистрали в одной точке создает удобную архитектуру для управления всей сетью и упрощает ее обслуживание. Задержки (латентность) при доступе к серверам уменьшаются, так как между клиентом и сервером никогда не стоит больше одного маршрутизатора. Кроме того, такое решение является более дешевым.
Максимум гибкости и управляемости достигается включением конфигурируемого концентратора (switching hub). Это позволяет объединять сегменты на разных этажах в общие подсети, вообще исключая задержки маршрутизации для некоторых приложений, Серверы можно устанавливать в одном специально приспособленном для этого месте без какой-либо потери производительности сети в целом. Благодаря применению конфигурируемого концентратора любой сервер может быть назначен любому сегменту, исключая задержку маршрутизации для определенных рабочих групп и/или приложений. Надежность сети достигается с помощью hot-swap-ôóíêöèé (возможности «горячей замены») в центральных устройствах — концентраторе и маршрутизаторе.
Гибридные межсетевые соединения (Hybrid backbones)
Архитектура Collapsed backbone (сосредоточенная сетевая магистраль) хороша для организации сети в рамках одного здания, но не подходит для организации сети между зданиями. Даже если здания находятся совсем рядом, заводить все сегменты сети на один центральный узел представляется совершенно непрактичным, усложняются и кабельные работы и ужесточаются требования к центральным устройствам. Поэтому для организации компьютерной сети в рамках нескольких зданий предпочтительна гибридная архитектура. Межсетевые соединения в рамках гибридной архитектуры чаще используют технологии локальных сетей, чем коммутацию ячеек, так как такие сети проще проектировать и обслуживать. В принципе межсетевое соединение может быть реализовано по той же технологии, что и сами сегменты (скажем, 10Base-T), но с ростом сети трафик в межсетевом канале будет увеличиваться и может превысить пропускную способность этого канала. Именно поэтому для построения межсетевых соединений стал применяться 100 Мбит/с FDDI. Таким образом, гибридная архитектура представляет собой сосредоточенную сетевую магистраль (collapsed backbone) на уровне здания и распределенную сетевую магистраль (distributed backbone) на уровне соединения между зданиями .
Выделенные линии типа «точка-точка» — наиболее часто применяемое соединение при расширении ЛВС. Финансовые соображения нередко обусловливают низкие скорости передачи для таких соединений — от 56-64 Кбит/с до 1,5-2,0 Мбит/с. Не менее распространена цифровая коммутируемая телефонная сеть ISDN или сервис Х.25. Линии связи этих сетей используются либо как резервные (на случай выхода из строя выделенной линии), либо как основные соединения (там, где позволяют соображения стоимости).
Недавно в качестве межсетевых соединений стали использоваться линии Frame Relay общего пользования. Спроектированные под современное цифровое оборудование, они обеспечивают большую пропускную способность, чем Х.25, и могут быть дешевле выделенных линий.
Неважно, какой тип физических соединений лежит в основе построения расширенной локальной сети, маршрутизаторы всегда выполняют две ключевые роли: транслируют форматы пакетов между сегментами или подсетями в локальных и предотвращают ненужное «широковещание» пакетов.
Ограничение роста
Растущее количество пользователей, более мощные настольные вычислительные системы и новое поколение приложений подвели возможности существующих сетей к их пределу.
По всем направлениям - от локальных сетей рабочих групп до глобальных сетей - теперь требуется еще большая производительность и масштабируемость. Задержки при прохождении сети теперь тоже становятся критичными при исполнении, например, приложений мультимедиа. Однако существующие сети не были спроектированы для обеспечения требуемой производительности (пропускной способности) и качества сервиса.
Сегментирование локальных сетей - основная техника расширения сети с точки зрения увеличения пропускной способности сети. Сегментирование приводит к сокращению числа рабочих станций в сегменте и соответственно к снижению конкуренции между ними за использование общего канала. Крайним случаем может являться пример использования одной рабочей станции в каждом сегменте, называемом микросегментацией, или «собственной» локальной сетью. При этом полоса пропускания в сегменте целиком и полностью принадлежит этой рабочей станции.
В рамках традиционных строительных блоков сетей сегментация выглядит сложным и дорогим мероприятием. Каждый сегмент сети является изолированной подсетью со своим уникальным адресом и занятым портом маршрутизатора. Однако в этом случае практически каждое перемещение, изменение или добавление компьютера в сеть влечет за собой утомительную и длительную процедуру реконфигурации. Более того, порты маршрутизаторов проектируются для обслуживания большого числа конечных рабочих мест, и соответственно велика и стоимость этих портов. Поэтому сегментация больших масштабов ведет к недопустимому увеличению стоимости на одно рабочее место.
Кроме того, сетевые магистрали (backbone) также нуждаются в большей пропускной способности, например, 10Base-T может быть заменена на 100 Мбит/с FDDI, однако принципиально ситуацию это не меняет - остается все та же разделяемая среда, в которой фрагменты сетей конкурируют за полосу пропускания. Рано или поздно, но пропускная способность этой магистрали достигнет предела.
И наконец, качество информационного обслуживания (Quality of Service). Современные приложения «клиент/сервер» испытывают всевозможные задержки. Это учитывается при проектировании сетей - клиентов и серверы стараются поставить как можно ближе друг к другу, идеально на один и тот же сегмент сети, однако кроме местоположения сервера нет других способов контролировать задержки.
А ведь существует ряд приложений (видео является блестящей иллюстрацией тому), для которых допуски на задержку ограничиваются очень жесткими рамками и, что еще хуже, многие из них требуют соединения типа peer-to-peer, на пути которого могут находиться несколько маршрутизаторов. Каждый маршрутизатор вносит свою (как правило, непредсказуемую) задержку, современные сети плохо приспособлены для выполнения приложений мультимедиа, в то время как вполне сносно могут работать с традиционными приложениями.
Для решения новых задач и дальнейшего роста сетей требуются новые строительные блоки. И как будет показано далее, именно коммутация является ключевым фактором для обеспечения масштабируемости сети и требуемого качества обслуживания (Quality of Service).
Коммутируемая Ethernet.
Просто заменив концентратор Ethernet на устройство, называемое коммутатором Ethernet, вы получите выделенный канал с пропускной способностью 10 Мбит/с на каждом порту коммутатора, сохранив при этом уже имеющиеся адаптеры ЛВС и разводку кабелей. Можно также приобрести коммутаторы со скоростными портами, которые будут обслуживать связи с сервером.
Первой концепцию коммутируемой Ethernet-òåõíîëîãèè внедрила фирма Kalpana. За ней последовали другие фирмы, в частности Alantec и Artel. Эта технология предусматривает разбиение большой сети на меньшие сегменты с соответственно меньшим числом пользователей в каждом сегменте, Каждый коммутационный порт отвечает за фильтрацию трафика, передаваемого в подключенный к нему сегмент. Если узел в одном сегменте передает сообщение узлу в другом сегменте, то порт пересылает сообщение в коммутационную систему и далее в соответствующий порт назначения. Коммутатор обеспечивает одновременные соединения между сегментами со скоростью 10 Мбит/с.
В концепции фирмы Kalpana для передачи пакетов используется не буферизованная коммутация, а метод, известный как сквозная коммутация (cut-through). Порт коммутатора передает пакет в порт назначения сразу по прочтении адреса пункта назначения. Такой метод позволяет сократить до минимума время ожидания при передаче между портами. К недостаткам этого метода можно отнести конфликты пакетов и возможность прибытия в сегмент-адресат дефектных пакетов.
В большинстве других коммутаторов используется буферизованная коммутация. Этот метод предполагает наличие буфера. Пакет принимается в эту память, и его конечный порт назначения определяется микропроцессором и встроенными программами по таблице адресов.