ref (664672), страница 47

Файл №664672 ref (Распределенные алгоритмы) 47 страницаref (664672) страница 472016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 47)

В заключение рассмотрим сценарий 2, где процессы в S сбойные и ведут себя следующим образом. Процессам в T они посылают сообщения сценария 0 и процессам в U они посылают сообщения сценария 1. Теперь можно показать индукцией по номеру импульса, что сообщения, посланные T к U (или, от U к T) - точно те, что посланы в сценарии 0 (или 1, соответственно). Следовательно, для процессов в T сценарий 2 неотличим от сценария 0 и для процессов в U он неотличим от сценария 1. Из этого следует, что процессы в T останавливаются на 0, и процессы в U останавливаются на 1. Противоречие. 

В доказательстве используется то, что Византийские процессы могут посылать сообщения 1-сценария, даже если они получили только сообщения 0-сценария. То есть, процессы могут "лгать" не только о своем собственном состоянии, но также и о сообщениях, которые они получили. Именно эту возможность можно устранить с помощью установления подлинности, как описано в Разделе 14.2; это ведет к способности восстановления N-1.



14.1.2 Алгоритм Византийского вещания

В этом подразделе будет показано, что верхняя граница способности восстановления, показанная в предыдущем подразделе, точна. Кроме того, противопоставляя ситуации в асинхронных сетях, максимальная способность восстановления достижима при использовании детерминированных алгоритмов. Мы представляем рекурсивный алгоритм, также Пиза и других [PSL80], который допускает t Византийских отказа при t < N/3. Способность восстановления - параметр алгоритма.

Алгоритм Broadcast(N, 0) дан как Алгоритм 14.2; он не допускает отказов (t = 0), и если отказов не происходит, все процессы останавливаются на входе командующего в 1 импульсе. Если отказ происходит, соглашение может быть нарушено, но завершение (и одновременность), тем не менее, гарантируется.



Импульс

1: Командующий посылает <value, > всем процессам,

помощники не посылают.

Получить сообщения импульса 1.

Командующий принимает решение на .

Помощники принимают решение следующим образом:

if от g в импульсе 1 было получено cообщение <value, x>

then принять решение x

else принять решение udef

Алгоритм 14.2 Broadcast (N, 0).



Протокол для способности восстановления t>0 (Алгоритм 14.3) использует рекурсивные вызовы процедуры для способность восстановления t-1. Командующий посылает свой вход всем помощникам в импульсе 1, и в следующем импульсе, каждый помощник начинает вещание полученного значения другим помощникам, но это вещание имеет способность восстановления t-1. Эта уменьшенная способность восстановления - трудноуловимый момент алгоритма, потому что (если командующий корректен) все t Византийские процессы могут находиться среди помощников, так что фактическое число отказов может превышать способность восстановления вложенного вызова Broadcast. Чтобы доказать правильность возникающего в результате алгоритма, необходимо рассуждать, используя способность восстановления t и фактическое число сбойных процессов f (см. Лемму 14.3). В импульсе t+1 вложенные вызовы производят решение, поэтому помощник p принимает решение в N-1 вложенных вещаниях. Эти N-1 решения хранятся в массиве , из которого решение p получается большинством голосов (значение, полученное непосредственно от командующего, здесь игнорируется!). Для этого на массивах определяется детерминированная функция major, с таким свойством, что, если v имеет большинство в W, (то есть, более половины элементов равны, то major(W)=v.



Импульс

1: Командующий посылает <value, > всем процессам,

помощники не посылают.

Получить сообщения импульса 1.

Помощник p действует следующим образом.

if от g в импульсе 1 было получено cообщение <value, x>

then else

Объявить другим помощникам, действуя как командующий

в в следующем импульсе

(t+1): получить сообщения импульса t + 1.

Командующий останавливается на .

Для помощника p:

Для каждого помощника q в встречается решение.

:= решение в ;

Алгоритм 14.3 Вещание (N, t) (ДЛЯ t> 0).



Лемма 14.2 (Завершение) Если Broadcast(N, t) начинается в импульсе 1, каждый процесс принимает решение в импульсе t+1.

Доказательство. Так как протокол рекурсивен, его свойства доказываются с использованием рекурсии по t.

В алгоритме Broadcast(N, 0) (Алгоритм 14.2), каждый процесс принимает решение в импульсе 1.

В алгоритме Broadcast(N, t) помощники начинают рекурсивные обращения алгоритма, Broadcast(N-1, t-1), в импульсе 2. Если алгоритм начат в импульсе 1, он принимает решение в импульсе t (это - гипотеза индукции), следовательно если он начат в импульсе 2, все вложенные вызовы принимают решение в импульсе t + 1. В одном том же импульсе принимается решение в Broadcast(N, t). 

Чтобы доказывать зависимость (также индукцией) предполагается, что командующий корректен, следовательно все t сбойных процесса находятся среди N-1 помощников. Так как t < (N - l) /3 не всегда выполняется, простую индукцию использовать нельзя, и мы рассуждаем, используя фактическое число неисправностей, обозначенное f.



Лемма 14.3 (Зависимость) Если командующий корректен, если имеется f сбойных процессов, и если N > 2f+t, то все корректные процессы останавливаются на входе командующего.

Доказательство. В алгоритме Broadcast(N, 0) если командующий корректен, все корректные процессы, останавливаются на значении входа генерала.

Теперь предположим, что лемма справедлива для Broadcast(N-1, t-1). Так как командующий корректен, он посылает свой вход всем помощникам в импульсе 1, так что каждый корректный помощник q выбирает . Теперь N > 2f + t означает (N - 1) > 2f + (t - 1), поэтому гипотеза индукции применяется к вложенным вызовам, даже если теперь все f сбойных процесса находятся среди помощников. Таким образом, для корректных помощников p и q, решение p в Broadcast(N-1, t-1) равняется , то есть, . Но, поскольку строгое большинство помощников корректно (N > 2f + t), процесс p завершится с , в котором большинство значений равняется . Следовательно, применение major к p выдает нужное значение . 



Лемма 14.4 (Соглашение) Все корректные процессы останавливается на одном и том же значении.

Доказательство. Так как зависимость означает соглашение в выполнениях, в которых командующий является корректным, мы теперь сконцентрируемся на случае, когда командующий сбойный. Но тогда самое большее t-l помощников сбойные, что означает, что вложенные вызовы функционируют в пределах своих способностей восстановления!

Действительно, t < N/3 означает t - 1 < (N - 1) / 3, следовательно, вложенные вызовы удовлетворяют соглашению. Таким образом, все корректные помощники остановятся на одном и том же значении для каждого помощника q во вложенном вызове . Таким образом, каждый корректный помощник вычисляет точно такой же вектор W в импульсе t + 1, что означает, что применение major дает тот же самый результат в каждом корректном процессе. 



Теорема 14.5 Протокол Broadcast(N, t) (Алгоритм 14.2/14.3) - t-Византийско-устойчивый протокол вещания при t < N/3.

Доказательство. Завершение было показано в Лемме 14.2, зависимость в Лемме 14.3, и соглашение в Лемме 14.4. 



Протокол Broadcast принимает решение в (t + 1)-ом импульсе, что является оптимальным; см. Подраздел 14.2.6. К сожалению, его сложность по сообщениям экспоненциальная; см. Упражнение 14.1.



14.1.3 Полиномиальный Алгоритм Вещания

В этом разделе мы представляем Византийский алгоритм вещания Долева и других [DFF+82], который использует только полиномиальное число сообщений и бит. Временная сложность выше, чем у предыдущего протокола; алгоритм требует 2t+3 импульса для достижения решения. В следующем описании будет предполагаться, что N = 3t + 1, и позже будет обсужден случай N > 3t + 1.

Алгоритм использует два порога, L = t + 1 и H = 2t + 1. Эти числа выбираются так, что (1) каждое множество из L процессов содержит по крайней мере один корректный процесс, (2) каждое множество из H процессов содержит по крайней мере L корректных процессов, и (3) имеется по крайней мере H корректных процессов. Обратите внимание, что предположение необходимо и достаточно для выбора L и H, удовлетворяющих этим трем свойствам.

Алгоритм обменивается сообщениями типа <bm, v>, где v или значение 1, или имя процесса (bm обозначает “broadcast message”, “вещать сообщение”.) Процесс p содержит двухмерную булеву таблицу R, где истинен тогда и только тогда, когда p получил сообщение <bm, v> от процесса q. Первоначально все элементы таблицы ложны, и мы полагаем, что таблица обновляется в фазе получения каждого импульса (это не показано в Алгоритме 14.4). Заметьте, что монотонна в импульсах, то есть, если становится истинным в некотором импульсе, он остается истиной в более поздних импульсах. Кроме того, так как только корректные процессы “выкрикивают” сообщения, для корректных p, q, и r в конце каждого импульса имеем: .

Характеристики

Тип файла
Документ
Размер
5,45 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее