ref (664672), страница 13

Файл №664672 ref (Распределенные алгоритмы) 13 страницаref (664672) страница 132016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

(4) Если S' = S {w} тогда dS’ (u, v)=min(dS (u, v), dS (u, w)+ dS (w, v)).

(5) Путь от u до v существует тогда и только тогда когда V-путь от u к v существует

(6) d(u, v)= dV (u, v),

Доказательство. Для всех u и S dS (u, u) .0 по причине того, что пустой путь (состоящий из 0 ребер) это S-путь от u к u с весом 0. Нет путей, имеющих меньший вес, потому что G не содержит циклов отрицательного веса, таким образом, dS (u, u) = 0.

Для (1):  -путь не содержит промежуточных узлов, так  - путь от u к v

состоит только из канала uv.

Для (2): следует непосредственно из (1).

Для (3): простой S’-путь от u к v содержит узел w единожды, или 0 раз как промежуточный. Если он не содержит w как промежуточную вершину он S-путь, иначе он - конкатенация двух S-путей, один к w и один из w.

Для(4): Это можно доказать применив Лемму 4.1 . Получим что (если S’-путь от u в v существует) это простой S' -путь длиной dS’(u, v) от u к v, такой, что dS’(u, v) = min(dS (u, v), dS (u, w) + dS (w, v) ) по (3).

Для (5): каждый S-путь - путь, и обратно.

Для (6): каждый S-путь - путь, и обратно, следовательно, оптимальный V-путь также оптимальный путь.

_____________________________________________________________________

begin (* Инициализация S =  и D = -дистанция *)

S:=0;

forall u,v do

if u = v then D[u, v] := 0

else

if uvE then D[u, v] := wuv

else D[u. v] :=  ;

(* Расширим S «центральными точками» *)

while S V do

(* Цикл инвариантен: u, v : D[u, v] = dS (u, v) *)

begin выбрать w из V \ S ;

(* Выполнить глобальную w-центровку *)

forall uV do

(* Выполнить локальную w-центровку u *)

forall vV do

D[u. v] := min ( D[u, v], D[u, w] + D[w, v] ) ;

S:=S {w}

end (*u, v : D[u, v] = dS (u, v)*)

end

Алгоритм4.4 Алгоритм Флойда-Уошалла.

Используя Утверждение 4.5 не сложно разработать алгоритм "динамического программирования" для решения проблемы кротчайших путей всех пар; смотри см. Алгоритм 4.4. Алгоритм вначале считает 0-пути, и, увеличивая, вычисляет S-пути для больших множеств S (увеличивая S "центральными" кругами), до тех пор, пока все пути не будут обсуждены.

Теорема 4.6 Алгоритм 4.4 вычисляет расстояние между всеми парами узлов за (N3) шагов.

Доказательство. Алгоритм начинает с D[u, v] = 0, если u = v, D[u, v] = wuv , если uvE и D[u, v] =  в другом случае, и S = 0. Следуя из Утверждения 4.5, частей (1) и (2), u, v имеет силу D[u, v] = dS (u, v) . В центральной окружности с центральной вершиной w множество S расширено узлом w, и означивание D[u, v] гарантирует (по частям (3) и (4) утверждения) что утверждение u, v : D[u, v] = dS(u, v) сохранено как инвариант цикла. Программа заканчивает работу, когда S = V, т.е., (по частям (5) и (6) утверждения и инварианту цикла) S-расстояние эквивалентно расстоянию.

Главный цикл выполняется N раз, и содержит N2 операций (которые могут быть выполнены параллельно или последовательно), откуда и следует временная граница данная теоремой.

_____________________________________________________________________

var Su : множество вершин;

Du : массив весов;

Nbu : массив вершин;

begin Su := ;

forall vV do

if v = u

then begin Du [v] :=0 ; Nbu[v] := udef end

else if v Neighu

then begin Du[v] := wuv ; Nbu[v] := v end

else begin Du[v] := ; Nbu[v] := udef end ;

while Su V do

begin выбрать w из V \ Su ;

(* Все вершины должны побывать вершиной w *)

if u == w

then "распространить таблицу Dw"

else "принять таблицу Dw"

forall vV do

if Du[w] + Dw[v] < Du[v] then

begin Du[v]:= Du[w] + Dw[v] ;

Nbu[v] := Nb[w]

end;

Su := Su U {w}

end

end;

Алгоритм 4.5 Простой алгоритм (Для узла u).

4.2.2 Алгоритм кротчайшего пути.(Toueg)

Распределенный алгоритм вычисления таблиц маршрутизации бал дан Toueg [TouSOa], основанный на алгоритме Флойда-Уошалла описанном в предыдущей части. Можно проверить что алгоритм Флойда-Уошалла подходит для этих целей, т.е., что его ограничения реалистичны для распределенных систем. Наиболее важное ограничение алгоритма что граф не содержит циклов отрицательного веса. Это ограничение действительно реально для распределенных систем, где обычно каждый отдельный канал означен положительной оценкой. Даже можно дать более строгое ограничение; смотри A1 ниже. В этой части даны следующие ограничения.

A1. Каждый цикл в сети имеет положительный вес.

A2. Каждый узел в сети знает обо всех узлах (множество V).

A3. Каждый узел знает какой из узлов его сосед (хранится в Neighu для узла u) и веса своих выходящих каналов.

Корректность алгоритма Toueg (Алгоритма4.6) будет более просто понять если мы сперва обсудим предварительную версию алгоритма , "простой алгоритм" (Алгоритм 4.5).

Простой алгоритм. Для достижения распределенного алгоритма переменные и операции алгоритма Флойда-Уошала распределены по узлам сети. D[u, v] - переменная принадлежащая узлу u; по соглашению, это будет выражено описанием Du[v] .Операция, означивающая Du[v], должна быть выполнена узлам u, и когда необходимо значение переменной узла w, это значение должно быть послано u. В алгоритме Флойда-Уошала все узлы должны использовать информацию из «центрального» узла (w в теле цикла), который посылает эту информацию к всем узлам одновременно операцией "распространения". В заключение, алгоритм будет расширен операцией для поддержки не только длины кратчайших S-путей (как в переменной Du[v]), но также первый канал такого пути (в переменной Nbu[v]).

Утверждение что циклы сети имеет положительный вес может использоваться чтобы показать что не существует циклов в таблицах маршрутизации.

Лемма 4.7 Пусть даны S и w и выполняется:

(1) для всех u :Du[w] = dS(u, w) и

(2) если dS(u, w) < и u w, то Nbu[w]- первый канал кратчайшего S-пути к w.

Тогда направленный граф Tw = (Vw, Ew), где (u VwDu[w]< ) и (ux Ew(vwNbu[w]=x)) - дерево с дугами направленными к w.

Доказательство. Во-первых, заметим, что если Du[w] <  для uw, то Nbu[w] udef и . Таким образом для каждого узла u Vw, u w существует узел x для которого Nbu[w] = x, и xVw.

Для каждого узла u w в Vw существует единственное ребро в Ew, такое что число узлов в Tw превышает количество ребер на единицу и достаточно показать что Tw не содержит циклов. Так uxEw подразумевает что dS(u, w) =wux+ dS(x, w), существование цикла <uo, u1, .. ., uk> в Tw подразумевает что

dS(uo, w) = wuo u1 + wu1 u2 + … + wuk-1 uou+ dS(uo, w),

т.е., 0 = wuo u1 + wu1 u2 + … + wuk-1 uou

что противоречит предположению, что каждый цикл имеет положительный вес. 

Алгоритм Флойда-Уошала теперь может быть просто преобразован в Алгоритм 4.5. Каждый узел инициализирует свои собственные переменные и исполняет N итераций основного цикла. Этот алгоритм не является окончательным решением, и он не дан полностью, потому что мы не описали, как может бать произведено (эффективно) распространение таблиц центрального узла. Пока это можно использовать как гарантированное, поскольку операция "распространить таблицу Dw" выполняется узлом w, а операция "принять таблицу Dw" выполняется другими узлами, и каждый узел имеет доступ к таблице Dw.

Некоторое внимание должно быть уделено операции "выбрать w из V \ S", чтобы узлы выбирали центры в однообразном порядке. Так как все узлы знают V заранее, мы можем запросто предположить, что узлы выбираются в некотором предписанном порядке (на пример, алфавитный порядок имен узлов).

Корректность простого алгоритма доказана в следующей теореме.

Теорема 4.8 Алгоритм 4.5 завершит свою работу в каждом узле после N итераций основного цикла. Когда алгоритм завершит свою работу в узле u Du[v] = d(u, v), и если путь из u в v существует то Nbu[v] первый канал кротчайшего пути из u в v, иначе Nbu[v] = udef.

Доказательство. Завершение и корректность Du[v] по завершении работы следует из корректности алгоритма Флойда-Уошала (теорема 4.6). Утверждение о значении Nbu[v] справедливо потому что Nbu[v] перевычисляется каждый раз когда означивается Du[v] .

Усовершенствованный алгоритм. Чтобы сделать распространение в Алгоритме 4.5 эффективным, Toueg заметил, что узел u для каждого Du[w] =  на старте w-централизованного обхода не меняет свои таблицы в течение всего w-централизованного обхода. Если Du[w] =  , то Du[w] + Dw[v] < Du[v] не выполняется для каждого узда v. Следовательно, только узлы, принадлежащие Tw (в начале w-централизованного обхода) нуждаются в получении таблиц w, и операция распространения может стать более эффективной рассылая Dw только через каналы, принадлежащие дереву Tw. Таким образом, w рассылает Dw своим сыновьям в Tw и каждый узел в Tw который принимает таблицу (от своего отца в Tw) пересылает её к своим сыновьям в Tw.

____________________________________________________________________

var Su : множество узлов ;

Du : массив весов;

Nbu : массив узлов ;

begin

Su :=  ;

forall vV do

if v = u

then begin Du[v] := O ; Nbu[v] := udef end

else if vNeighu

then begin Du[v] := wuv ; Nbu[v] := v end

else begin Du[v] :=  ; Nbu[v] := udef end ;

while Su V do

begin выбрать w из V \ Su ;

(* Построение дерева Tw *)

forall xNeighu do

if Nbu[w] = x then send < ys, w> to x

else send < nys, w > to x ;

num_recu := O ; (* u должен получить |Neighu| сообщений *)

while num_recu < |Neighu| do

begin получить < ys, w > или < nys, w > сообщение ;

num_recu := num_recu + 1

end;

if Du[w] <  then (* участвует в центр. обходе*)

begin if u w

then получить ,w,D> от Nbu[w] ;

forall xNeighu do

if < ys, w > было послано от x

then послать < dtab, w, D>) к x; ;

forall v V do (* локальный w-центр *)

if Du[w] + D[v] < Du[v] then

begin Du[v] := Du[w] + D[v] :

Nbu[v] := Nbu[w]

end

end;

Su := Su{w}

end

end

Алгоритм 4.6 Алгоритм Тoueg (для узла u).

_____________________________________________________________________

В начале w-централизованного раунда узел u с Du[w] <  знает кто его отец (в Tw) , но не знает кто его сыновья. Поэтому каждый узел v должен послать сообщение к каждому своему соседу u, спрашивая u является ли v сыном u в Tw. Полный алгоритм дан как Алгоритм 4.6. Узел может участвовать в пересылке таблицы w когда известно что его соседи являются его сыновьями в Tw. Алгоритм использует три типа сообщений:

(1) w> сообщение u посылает к x; в начале w-централизованного обхода если x отец u в Tw.

(2) w> сообщение u посылает x в начале w-централизованного обхода если x не отец u в Tw

(3) , w, D> сообщение посылается в течение w-централизованного обхода через каждое ребро Tw чтобы переслать значение Dw к каждому узлу который должен использовать это значение.

Полагая сто вес (ребра или пути) вместе с именем узла можно представить W битами, сложность алгоритма показана следующей теоремой.

Теорема 4.9 Алгоритм 4.6 вычисляет для каждых u и v дистанцию от u к v, и, если эта дистанция конечная, первый канал. Алгоритм обменивается 0(N) сообщениями на канал,, 0(N*|E|) сообщений всего, O(N2W) бит на канал, O(N 3W) бит всего, и требуется 0(NW) бит хранения на узел.

Доказательство. Алгоритм 4.6 выведен от Алгоритма 4.5, который корректен.

Каждый канал переносит два ( < ys, w> или < nys, w> ) сообщений (одно в каждом направлении) и не более одного <dtab, w, D > сообщения в w-централизованном обходе, который включает не более 3N сообщений на канал. < ys, w > или < nys, w > сообщение содержит O(W) бит и w, D > сообщение содержит O(NW) бит, что и является границей для числа бит на канал. Не более N2 < dtab, w,D> сообщений и 2N - |E| (<ys,w> и ,w> ) сообщений обмена, и того всего O(N2 - NW +2N-|E|-W) = O(N3W) бит. Таблицы Du и Nbu хранящиеся в узле u требуют 0(NW) бит.

В течение w-центализованного обхода узлу разрешено принимать и обрабатывать сообщения только данного обхода, т.е., те которые переносят параметр w. Если каналы удовлетворяют дисциплине FIFO тогда сообщения w> и , w> прибывают первыми, по одному через каждый канал, и затем сообщение < dtab, w, D > от Nbu[ w] (если узел в Vw). Таким образом возможно, аккуратно программируя, опустить параметр w во всех сообщениях если каналы удовлетворяют дисциплине FIFO. Если каналы не удовлетворяют дисциплине FIFO возможно что сообщение с параметром w' придет пока узел ожидает сообщения для обхода w, тогда как w' становится центром после w. В этом случае параметр используется чтобы различить сообщения для каждого централизованного обхода, и локальная буферизация ( в канале и узле) должна использоваться для отсрочки выполнения w'-сообщения.

Характеристики

Тип файла
Документ
Размер
5,45 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее