CBRR2942 (664025)

Файл №664025 CBRR2942 (Методы приобретения знаний в интеллектуальных системах)CBRR2942 (664025)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Введение.

Инженерия знаний – это область информационной технологий, цель которой – накапливать и применять знания, не как объект обработки их человеком, но как объект для обработки их на компьютере. Для этого необходимо проанализировать знания и особенности их обработки человеком и компьютером, а также разработать их машинное представление. К сожалению точного и неоспоримого определения, что собой представляют знания, до сих пор не дано. Но тем не менее цель инженерии знаний – обеспечить использование знаний в компьютерных системах на более высоком уровне, чем до сих пор – актуальна. Но следует заметить, что возможность использования знаний осуществима только тогда, когда эти знания существуют, что вполне объяснимо. Технология накопления и суммирования знаний идет бок о бок с технологией использования знаний, они взаимно дополняют друг друга и ведут к созданию одной технологии, технологии обработки знаний.

В данной работе я постарался описать методы решения одной из проблем данного комплекса – это проблемы приобретения знаний, или говоря другими словами – обучения.

Методы приобретения знаний.

Приобретение знаний реализуется с помощью двух функций: получения информации извне и ее система­тизации. При этом в зависимости от способности си­стемы обучения к логическим выводам возможны различные формы приобретения знаний, а также раз­личные формы получаемой информации. Форма пред­ставления знаний для их использования определяется внутри системы, поэтому форма информации, которую она может принимать, зависит от того, какие спо­собности имеет система для формализации информа­ции до уровня знаний. Если обучающаяся система со­всем лишена такой способности, то человек должен заранее подготовить все, вплоть до формализации информации, т. е. чем выше способности машины к логическим выводам, тем меньше нагрузка на че­ловека.

Функции, необходимые обучающейся системе для приобретения знаний, различаются в зависимости от конфигурации системы. В дальнейшем при рассмот­рении систем инженерии знаний предполагается, что Существует система с конфигурацией, показанной на рис, 1.1, которая включает базу знаний и механизм логических выводов, использующий эти знания при решении задач. Если база знаний пополняется зна­ниями о стандартной форме их представления, то этими знаниями также можно воспользоваться. Сле­довательно, от функций обучения требуется преобра­зование полученной извне информации в знания и пополнение ими базы знаний.


Рис.1 Базовая структура систем обработки знаний

Можно предложить следующую классификацию систем приобретения знаний, которая будет опираться на способность системы к восприятию знаний в разных форматах, качественно различающихся между собой и способностью к формализации (рис 2).


Рис 2.Классификация методов приобретения знаний.

Обучение без выводов.

Категорию А можно назвать обучением без выводов или механическим запоминанием, это простой процесс получения информации, при котором необяза­тельны функции выводов, а полученная информация в виде программ или данных используется для реше­ния задач в неизменном виде. Другими словами, это способ получения информации, характерный для су­ществующих компьютеров.

Категория Б—это получение информации извне, представленной в форме знаний, т. е. В форме, кото­рую можно использовать для выводов. Обучающейся Системе необходимо иметь функцию преобразования входной информации в формат, удобный для даль­нейшего использования и включения в базу знании.

Приобретение знаний на этом этапе происходит в наиболее простой форме: это знания, предварительно подготовленные человеком во внутреннем формате, какими являются большинство специальных знании, изначально заданных в экспертных системах. В слу­чае прикладных систем инженерии знаний необходи­мо преобразовать специальные знания из какой-либо области в машинный формат, но для этого нужен посредник, хорошо знающий как проблемную об­ласть, так и инженерию знаний. Таких посредников называют инженерами по знаниям. В общем случае для замены функции посредника можно использовать и специальные подпрограммы. Т.е. необходимо иметь функции выводов достаточно высокого уровня, но можно ограничиться и выводами на сравнительно низком уровне, а остальное доверить человеку — в этом и состоит приобретение знаний в диалоге. При­мером служит хорошо известная система TEIRESIAS. Это система-консультант в области медицины, разра­ботанная на базе системы MYCIN. Специалисты в проблемной области являются преподавателями обучающейся системы, а ученик — система инженерии знаний — изучает ответы на поставленные задачи и корректирует те правила в базе знаний, которые ра­нее приводили к ошибкам. Для подготовки знаний в экспертной системе необходимы вспомогательные средства типа редактора знаний, причем в процессе приобретения знаний в диалоге не только редактируются отдельные правила и факты, но и воспол­няются недостатки существующих правил, т. е. ведется редактирование базы знаний.

Если знания заданы во внешнем формате, например на естественном языке, то следует преобразовать их во внутренний формат. Для этого необходимо по­нимать внешнее представление, т. е. естественный язык, графические данные и т. п. Фактически приобретение знаний и их понимание тесно связаны. Проб­лема понимания сводится не только к преобразованию структуры предложений — необходимо получить фор­мат, удобный для применения.

Аналогичная проблема — преобразование во внутренний формат советов, подсказок по решению задач, что называется «операционализацией» знаний В этом заключается центральная проблема искус­ственного интеллекта; она, в частности, изучает пре­образование советов, подсказок, представленных в терминах проблемной области, в процедуры. Напри­мер, система UNDERSTAND выполняет операционализацию представления задачи о ханойской башне на английском языке путем построения соответствующих состояний и операций, приводящих к этим состоя* киям.

Приобретение знаний на метауровне

Выше было рассмотрено обучение на объектном уровне, а еще более сложная проблема - приобре­тение знаний на метауровне, т. е. знаний, основой которых является информация по управлению реше­нием задач с использованием знаний на объектном уровне. Для знаний на метауровне пока не установ­лены ни формы представления и использования, ни связь со знаниями на объектном уровне, ни другая техника их систематизации. Поскольку не определена форма их представления с точки зрения ис­пользования, то трудно говорить о приобретении знаний на метауровне. Тем не менее с этой пробле­мой связаны многие надежды в инженерии знаний,

Приобретение знаний из примеров

Метод приобретение знаний из примеров отличается от предыдущего метода, тем , что здесь выполняется сбор отдельных фактов, их преобразование и обобщение, а только затем они будут использованы в качестве знаний. И соответственно от уровня сложности системы вывода в системе будут возникать разные по степени общности и сложности знания. Необходимо также упомянуть о том, что этот метод приобретения знаний почти не нашёл практического применения, это может быть связано с тем, что входная информация представляет собой не систематизированный набор данных и для их обработки требуется наличие в системе обширных знаний по конкретной области.

По сравнению с предыдущим методом приобретения знаний, этот метод имеет большую степень свободы и соответственно необходимо описать общие положения этого принципа.

1. Языки представления. Обучение по примерам — это процесс сбора отдельных фактов, их обобщение и систематизация, поэтому необходим унифицирован­ный язык представления примеров и общих правил. Эти правила, будучи результатом обучения, должны стать объектами для использования знаний, поэтому и образуют язык представления знаний. И наоборот, язык представления знаний должен учитывать и определять указанные выше условия приобретения знаний.

2. Способы описания объектов. В случае обучения .по примерам из описаний отдельных объектов созда­ются еще более общие описания объектов некоторого класса, при этом возникает важная проблема: как описать данный класс объектов. В полном классе некоторых объектов следует определить меньший класс объектов, обладающих общим свойством (объ­екты только в этом классе обладают заданным свойством), но в действительности проще опреде­лить список объектов и убедиться, что все объекты в нем обладают общим свойством. Для некоторо­го типа задач можно эффективно использовать лож­ные примеры или контрпримеры, убедительно пока­зывающие, что данные объекты не входят в этот класс.. Иллюстрацией применения контр­примеров может служить понятие «почти то».

3. Правила обобщения. Для сбора отдельных приме­ров и создания общих правил необходимы правила обобщения. Предложено несколько способов их опи­сания: замена постоянных атрибутов языка на пере­менные, исключение описаний с ограниченным при­менением и т. п. Очевидно, что эти способы тесно свя­заны с языком представления знаний.

4. Управление обучением. В процессе обучения по примерам можно применять различные стратегии структуризации информации и необходимо управлять этим процессом в ответ на входные данные. Сущест­вуют два классических метода: метод «снизу-вверх», при .котором, последовательно выбираются и структу­рируются отдельные сообщения, и метод «сверху-вниз», при котором сначала выдвигается гипотеза, а затем она корректируется по мере поступления инфор­мации. На практике эти методы комбинируются, хотя управление обучением с максимальным эффектом не такая уж простая проблема.

При изучении метода приобретения знаний по примерам можно выделить следующий ряд методов:

  1. Параметрическое обучение

  2. Обучение по аналогии

  3. Обучение по индукции.

Параметрическое обучение.

Наиболее простая фор­ма обучения по примерам или наблюдениям состоит в определении общего вида правила, которое должно стать результатом вывода, и последующей корректи­ровки входящих в это правило параметров в зависи­мости от данных. При этом используют психологи­ческие модели обучения, системы управления обуче­нием и другие методы.

Примером обучающейся системы этой категории в области искусственного интеллекта является си­стема Meta-Dentral. Эта система выводит новые пра­вила путем коррекции правил продукций в процессе обучения или на основе исходных массспектральных данных параметрическое обучение в ней представ­лено в несколько специфичном виде, но все же она относятся к указанной выше категории, поскольку в системе задана основная структура знаний, кото­рая корректируется последовательно по отдельным данным.

Ярким примером применения этого метода приобретения знаний могут также служить системы распознавания образов (обсуждавшиеся ранее в другом докладе). В них ясно просматривается основной принцип этого метода - в ходе обучения нейронная сеть автоматически по определенным заранее законам корректирует веса связей между элементами и значения самих элементов.

Метод обучения по индукции.

Среди всех форм обучения необходимо особо выделить обучение на основе выводов по индукции - это обучение с использованием выводов высокого уровня, как и при обучении по аналогии. В процессе этого обучения путем обобщения совокупности имею­щихся данных выводятся общие правила. Возможно обучение с преподавателем, когда входные данные задает человек, наблюдающий за состоянием обу­чающейся системы, и обучение без преподавателя, когда данные поступают в систему случайно. И в том и в другом случае выводы могут быть различными, они имеют и различную степень сложности в зави­симости от того, задаются ли только корректные данные или в том числе и некорректные данные и т. п. Так или иначе, обучение этой категории включает открытие новых правил, построение теорий, создание структур и другие действия, причем модель теории или структуры, которые следует создать, за­ранее не задаются, поэтому их необходимо разра­ботать так, чтобы можно было объяснить все пра­вильные данные и контрпримеры.

Индуктивные выводы возможны в случае, когда представление результата вывода частично опреде­ляется из представления входной информации. В по­следнее время обращают на себя внимание про­граммы генерации программ по образцу с исполь­зованием индуктивных выводов.

Как уже было сказано, индуктивный вывод — это вы­вод из заданных данных объясняющего их общего правила. Например, пусть известно, что есть некото­рый многочлен от одной переменной. Давайте посмот­рим, как выводится f(х), если последовательно за­даются в качестве данных пары значений (0, f(0)), (1, f(1)), .... Вначале задается (0, 1), и естественно, что есть смысл вывести постоянную функцию f(х)=1. Затем задается (1, 1), эта пара удовлетворяет предложенной функции f{х)= 1. Следовательно в этот момент нет необходимости менять вывод. Наконец, задается (2, 3), что плохо согласуется с нашим выводом, поэтому откажемся от пего и после несколь­ких проб и ошибок выведем новую функцию f(х)==х2—х+1, которая удовлетворяет всем задан­ным до сих пор фактам (0, 1), (1, 1), (2,3). Далее мы убедимся, что эта же функция удовлетворяет фактам (3, 7), (4, 13), (5, 21) ..., поэтому нет необ­ходимости менять этот вывод. Таким образом, из последовательности пар переменная-функция можно вывести многочлен второй степени. Грубо говоря, такой метод вывода можно назвать индуктивным.

Как видно из этого примера, при выводе в каждый момент времени объясняются все данные, полученные до этого момента. Разумеется, данные, полученные позже, уже могут и не удовлетворять этому выводу. В таких случаях приходится менять вывод. Следова­тельно, в общем случае индуктивный вывод—это не­ограниченно долгий процесс. И это не удивительно, если вспомнить процесс освоения человеком языков, процесс совершенствования программного обеспече­ния и т. п.

Для точного определения индуктивного вывода необходимо уточнить:

  1. множество правил—объ­ектов вывода,

  2. метод представления правил,

  3. способ показа примеров,

  4. метод вывода и

  5. критерий правильности вывода.

В качестве правил—объектов вывода—можно рассматривать главным образом индуктивные функ­ции, формальные языки, программы и т. п. Кроме того, эти правила могут быть представлены в виде машины Тьюринга для вычисления функций, грам­матики языков, операторов Пролога и другим спо­собом. Машина Тьюринга—это математическая модель компьютера, ее в принципе можно считать про­граммой. В случае когда объектом вывода является формальный язык, он сам определяет правила, а его грамматика — метод представления правил, поэтому говорят о грамматическом выводе.

Характеристики

Тип файла
Документ
Размер
55 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7041
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее