referat (663745), страница 3

Файл №663745 referat (Использование линий электропроводки в качестве среды передачи информации) 3 страницаreferat (663745) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

В сравнении с ними разработка нормативных документов для широкополосных PLC-систем только началась (это произошло в 1999г).

По вопросам PLC-систем CENELEC и ETSI работают как каждый в своей группе (ETSI: EP PLT, CENELEC: SC 205A WG10), так и в объединенной WG. Последняя также практикует сотрудничество с CEPT и CISPR, но не спешит его укреплять.

К сегодняшнему дню были разработаны следующие специальные документы:

  • Так называемый, документ «сосуществования» TS 101 867:2000-11, изданный ETSI, определяющий сосуществование между системами, находящимися в здании, и внешними системами. В первую очередь весь частотный диапазон (1,6-30 МГц) делится на две части так называемой «делящей частотой» и присваиваются: нижний диапазон внешним системам, верхний  внутренним.

  • Схожий документ CENELEC prEN 59013, являющийся идентичным с вышеупомянутым ETSI TS и отличающийся только значением делящей частоты  13,5 МГц вместо 10 МГц в ETSI TS.

Дискуссии относительно этой делящей частоты подчеркивают установившуюся коммерческую оппозицию между производителями оборудования для внешних и внутренних систем, оппозицию, которая до сих пор затрудняет принятие положительного решения по prEN.

В то же время для второго поколения PLT-оборудования решение, разрешающее использование всего частотного диапазона в случае отсутствия PLT-активности в одной из половин радиодиапазона, уже находится на стадии рассмотрения.

  • Так называемый «PSD»-документ TS 101 896:2001-02, разработанный ETSI, предлагающий ограничения на плотность энергетического спектра.

  • Так называемый «Радиационный» документ CENELEC, предлагающий сравнимые пределы уровня мощности подаваемого сигнала (дБ(мВ/Гц)) и силы излучаемых полей на расстоянии 10 м в Информационном Дополнении, в котором последний раз связывалась мощность сигнала с «коэффициентом соединения». Для последнего только эмпирически полученные диапазоны значений доступны для вычислений.

Кроме того, можно упомянуть два документа, в Европе трактуемые как «региональные»:

  • Немецкий «Nutzungsbestimmung» NB30, изданный «Regulierungsbehörde für Tele-kommunikation und Post» (RegTP), после обсуждения, длившегося с 1999 г, был одобрен Deutche Bundesrat 30 марта 2001г. Эта работа не была замечена Европейской Комиссией. В соответствии с этим документом частоты в диапазоне от 9кГц до 3 ГГц внутри и вдоль линий должны свободно использоваться при соблюдении некоторых условий:

    • избытка различных частотных диапазонов, используемых радиослужбами, связанными с безопасностью.

    • существования определенных ограничений пиковых значений сил излучаемого поля на расстоянии 3м.

    • Отсутствия защиты против помех, вызываемых внутренними радиосистемами.

  • Британское Радиокоммуникационное Агентство определило ограничения на силы поля, излучаемого телекоммуникационными системами в частотном диапазоне 150 кГц – 30 МГц на расстоянии 1м (150 кГц – 1,6 МГц) или 3м (1,6 МГц – 30 МГц), которые примерно на 20 дБ меньше ограничений в NB30.

Единственный существующий гармонизированный стандарт, который признан соответствующими сообществами как пригодный к использованию для вычисления помех от PLC-систем,  это EN 55022. Для частотного диапазона 150 кГц – 30 МГц этот стандарт, базирующийся на CIPSR 22, устанавливает ограничения на напряжение проводимого сигнала (дБ (мкВ)). Если эти ограничения, без возможности прямого преобразования в ограничения на силу поля и, следовательно, без возможности сравнения с NB 30, будут применены к PLC-системам, операционный радиус этих систем может сократиться до участка в 300 м. Это значение рассматривается как эталон для экономичного использования PLC-систем, без использования повторителей. В настоящее время CISPR вносит поправки в CISPR 22, утверждающие, что PLC-системы попадают в рамки CISPR 22.

3. Технологические особенности PLC-систем

3.1 Электромагнитные проблемы в PLC-системах

Магистральная передача в целом, а PLC-системы в частности — это крайне сложные системы, разработка и поддержка работы которых требует учитывать многочисленные аспекты. В данной главе рассмотрим те аспекты, которые связаны с электромагнитными проблемами, как то: эффекты проводимости в сетях и эффекты излучения. В них входят:

      • определение частотной полосы и соответствующих частот

      • трансмиссионные характеристики и затухание сигнала в линиях

      • ограниченный уровень шума внешних источников

      • исключение возможности порчи сетевых устройств передаваемыми сигналами.

      • исключение возможности порчи в связи с излучаемыми полями

      • исключение взаимного влияния между системами

      • уровень отклика от устройств-приемников

      • допустимость/ограничение уровня сигнала

      • модуляция и кодирование сигнала

Далее будет дана базовая информация по этим аспектам. Однако стоит помнить, что они не могут рассматриваться независимо друг от друга, так как один аспект может влиять на другие: например, уровень сигнала должен быть выше, чем уровень шума, но не настолько высок, чтобы излучаемые поля нарушали радиотрансляцию. Модуляция сигнала и кодирование — это основные показатели, определяющие надежность системы. Нельзя также забывать и про экономический аспект.

3.2 Основные технические характеристики.

3.2.1 Частота

PLC-системы нуждаются в достаточно широкой полосе частот, чтобы выполнять высокоскоростные функции. Эта полоса располагается в пределах 1-30 МГц.

Существуют три проблемы:

  • данный диапазон частот занят коротковолновыми радиослужбами: широковещательной, службой безопасности, любительским радио. Поэтому эти частоты должны быть исключены

Рисунок 2. Распределение PLC – частот и допустимое излучение с исключениями Чимни (Chimney) в соответствии с NB30 (Германия).

Начало полосы (кГц)

1810

3500

7000

10100

14000

18055

21000

24890

28000

Конец полосы (кГц)

1850

3800

7100

10150

14350

18168

21450

24990

29700

  • необходимо избегать интерференции между адресными и внутренними системами; решение — выделять отдельную полосу частот для каждого приложения

  • испускаемые электромагнитные поля могут нарушать прием широковещательных радиотрансляций или других служб в том же частотном диапазоне.

Последняя проблема достаточно серьезна и более подробно рассмотрена далее в пункте 3.2.5. Первые две проблемы приводят к частотному спектру, представленному на рис. 2.

3.2.2 Передача сигнала

Большое разнообразие сетей и условий нагрузки делает очень сложным подсчет уровня напряжения сигнала на радиочастоте в 50/60-герцовых системах.

Практические статистические измерения дают результаты, с каким затуханием передаются сигналы. На Рис. 3 (верхняя кривая) показано в качестве примера затухание напряжения в 300-метровом кабеле как функция частоты: напряжение падает в пределах 20 дБ при частоте 1 МГц, 80 дБ при 20 МГц.

Рисунок 3. Затухание напряжения сигнала и шум в 300-метровом кабеле.

В первом приближении оно может быть подсчитано в следующем порядке:

Тип линии Затухание Радиус использования

1-30 МГц

Адресная область:

Кабель 40-80 дБ 300 м

Надземные линии 40-80 дБ 300 м

Внутренняя область до 80 дБ около 50 м

Когда невозможно достичь необходимого уровня отклика, требуется установка повторителей. Могут также потребоваться шлюзы между линиями обеспечения и внутренними линиями.

3.2.3 Уровень шума и помехи проводимости в сетях низкого напряжения

Уровень шума в линиях определяется для модемов. Рис. 3 (нижняя кривая) демонстрирует пример уровня шума в кабеле обеспечения. Существует три типа помех:

  • постоянный широкополосный шум (белый шум)

  • узкополосные «пики» (отдельные частоты)

  • пульсации (не показаны на рис. 3)

Измерения шума основываются на нескольких факторах: ширина полосы и временная константа измерительного инструмента, пиковое, или квазипиковое, или среднее значение и т.д. Это делает сравнительные измерения сложными. Должен быть соответствующий метод, чтобы стандартизировать измерения, например, в соответствии с CISPR 16 (ширина полосы 9 кГц, пиковое значение). По общему мнению стоит рассматривать диапазон:

    • широкополосный шум (ширина полосы 100 кГц, пиковое значение): 30-40 дБ, мкВ (по отношению к 9 кГц — отношение частот не известно достаточно хорошо для этого типа шума: от <20 дБ мкВ до <30 дБ мкВ)

    • Узкополосный шум (до 50-60 дБ мкВ)

Измерения в зданиях показывают уровень шума в тех же пределах. Сравнимые уровни были зарегистрированы и в компьютерных сетях.

3.2.4 Ограничение уровня сигнала во избежание нарушения работы других сетевых устройств.

PLC-системы не должны нарушать работу других устройств, подключенных к той же сети. Защищенность таких устройств против проводимого «шума» в частотном диапазоне от 0,15 до 80 Мгц обеспечивается Общим стандартом EMC. Это намного больше, чем уровень сигнала PLC (см. параграф 5.6 ниже) и опасность такого воздействия исключена.

3.2.5 Ограничение уровня сигнала из-за излучаемых полей.

Напряжение в PLC-системах и токи, циркулирующие в сетях низкого напряжения, порождают электромагнитное излучение, которое может взаимодействовать с радиослужбами, работающими на той же частоте. Фактически, диапазон 1-30 Мгц, включающий в себя соответственно длины волн 300-10 м, занят коротковолновыми широковещательными службами и другими зарезервированными сервисами, такими как сигнализация, полиция и т.д. Конечно же, их функции не должны нарушаться PLС-системами, и это является основной заботой властей и пользователей.

Некоторые особенности электросетей:

  • каждый проводник излучает электрические и магнитные поля. Когда два проводника с противоположно направленными токами находятся очень близко друг к другу, результирующее поле очень мало, практически пренебрежимо.

  • Если проводники находятся на некотором расстоянии, некоторое поле образуется вследствие асимметрии между двумя компонентами. Так происходит в случае силовых кабелей 3ф +(N+G) во внешней области, особенно когда N-проводник заземлен. Асимметрия становится еще значительнее в случае надземных линий.

Асимметрия возникает также внутри зданий и комнат вследствие «дикой» конфигурации внутренней проводки, розеток, бытовых приборов и т.д.

Пределы для PLC-сигналов даны на время в двух формах: как ограничения на излучаемые поля или как ограничения на уровень сигнала в сети. Рисунок 4 демонстрирует допустимые пределы для полей, излучаемых PLC-сигналами, определяемые различными национальными властями. Британские требования более жесткие, американские — более мягкие.

Рисунок 4. Ограничения на излучаемые поля в Британии, Германии и США.

Перед установкой новой PLC-системы необходимо определить поле, которое она может породить. Что касается силовых кабелей, в этом случае поля, создаваемые PLC-системой могут быть вычислены. Однако на практике оказывается, что, по сравнению с прямым измерением электрических полей, вычисления дают слишком большие значения. Это можно объяснить тем фактом, что рядом с кабелем мы не можем определить поле в удаленных областях. В зданиях конфигурация проводки настолько сложна, что практически применимы только статистические измерения. В основном дальнейшие статистические исследования и представляются необходимыми. Нас интересуют создающие помехи поля на расстоянии 1,3, максимум 10 м от силовых линий или внутри комнаты.

Чтобы с большей легкостью оценить эти поля, было предложено упрощение — использовать замещающую функцию, названную «коэффициент соединения». Он может быть определен как отношение:

E(f) – Электрическое поле в В/м

kE = ———————————————

U(f) — Напряжение передаваемого сигнала в В

Практически в этом частотном диапазоне легче измерять магнитное поле и преобразовывать результат в электрическое поле путем умножения на сопротивление пустого пространства Zo (377Ω)

E(f) μV/m = H(f) μA/m*Zo или E(f) dBμV = K(f)dB μA/m + 51,5dB

Замечание: Другое предложение заключается в том, чтобы соотнести коэффициент соединения с вводимой мощностью, но этот метод выглядит менее простым при проведении измерений в узле сети.

Рис. 5 иллюстрирует пример измерений коэффициента соединения. Практически существуют огромный разброс значений этого коэффициента, возможно, по причине эффекта резонанса, который делает прогноз полей крайне неточным.

Рисунок 5. Коэффициент соединения для напряжения поблизости от частного дома.

При первом приблизительном рассмотрении, могут быть получены следующие значения коэффициента соединения:

  • силовые кабели во внешних областях: от -35 до -55 дБ

  • внутренние площади: от -20 до 40 дБ

3.3 Измерение полей.

Что касается узкополосных PLC-систем, было проведено множество измерений полей. Несколько систем, например, входящие в ENEL в некоторых итальянских городах, уже в регулярном использовании в течение некоторого времени или расширяются в данный момент.

Недавно в некоторых странах были проведены или стали рассматриваться на предмет запуска измерения полей, связанные с широкополосными PLC-системами.

Результаты, полученные в ходе этих измерений, привели к следующим заключениям:

  • удовлетворительная производительность высокоскоростного доступа в Интернет и телефонии

  • различные нужды/возможности оптимизации; например, путем оптимизации программного обеспечения и модификации использования части частотных полос может быть достигнуто улучшение пропускной способности от 1,8 Мбит/с до 3 Мбит/с.

  • ограничение сил поля до значения, соответствующего указанному в NB 30, может привести к снижению приемлемой дистанции для «последней мили» примерно вдвое. Ограничение в соответствии с EN 55022, Class B (жилой район), может вести к росту нерентабельности.

  • Высокая заинтересованность потребителей в предложенных услугах, особенно достаточно высокой скорости передачи данных в Интернет в сочетании с неплохими тарифами. Увеличение конкурентоспособности входит в интересы Европейской Комиссии.

3.4 Модуляция сигнала и кодирование.

Методы модуляции сигналов и кодирование команд, в общем, не рассматриваются как проблемы, но, так как они тесно связаны с нарушениями работы сети, мы коротко рассмотрим их.

Что касается метода модуляции, в связи с передачей различных сигналов и иммунитету к импульсным помехам рассматриваются только широкополосные методы с частотным мультиплексированием. OFDM-модуляция (Orthogonal Frequency Division Multiplexing — Мультиплексирование с разделением по ортогональным частотам), похоже, пользуется наибольшим предпочтением. Она состоит в разделении доступного спектра на большое число подканалов и передаче данных по N из этих каналов с частотами f1,f2,…,fN. Преимущество этого метода состоит в том, что он позволяет избегать каналов, соответствующих запрещенным частотам и, в связи с этим, повысить уровень передаваемого сигнала. Подробнее мы остановимся на OFDM-модуляции, являющейся основой технологии PLC, немного позднее.

Метод кодирования должен выбираться в соответствии с конкретными выполняемыми функциями. Важный пункт, который надо учитывать — это одновременный запуск различных приложений, например, команд и Интернет или телефона. Каждому приложению при этом выделяется определенное количество каналов.

3.5 Руководство по определению уровня сигнала.

Различные факторы, описанные выше, которые должны быть учтены, делают относительно сложной оценку реальных характеристик PLC-системы. Следующий пример может служить руководством, принимая во внимание неуверенность в полученных коэффициентах. Предполагается система с операционной полосой шириной в 1Мгц (2Мбит/c), использование OFDM-модуляции (которая обеспечивает хорошую защиту против шумовых пульсаций) и средние значения учитываемых факторов.

Можно пойти следующим путем:

Характеристики

Тип файла
Документ
Размер
2,51 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6529
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее