metod Simpsona (663700)
Текст из файла
Московский Авиационный Институт
Расчетно графическая работа по:
алгоритмическим языкам и программированию.
кафедра 403
Выполнил: Гуренков Дмитрий гр. 04-109 /____________/
Проверил и утвердил: Кошелькова Л.В. /____________/
Москва 1999г.
Р.Г.Р.
Вариант 4.24
Разработать алгоритм вычисления таблици значений
функции: у = S * cos(x) + q * sin(x),
где q - параметры функции,
S - значение интеграла.
a=5
Интеграл вычислять с точностью EPS.
Вычислить N значений функции, начиная
с X=Xn и изменяя аргумент с шагом Dx.
Численное интегрирование функции одной переменной.
Численное интегрирование состоит в нахождении интеграла от непрерывной функции
по квадратной формуле:
где коэффициенты - действительные числа и узлы
принадлежат
k=1, 2, ... , n. Вид суммы
определяет метод численного интегрирования, а разность
- погрешность метода.
Для метода Симпсона
Правая часть формулы Симпсона является интегральной суммой и при стремится к данному интегралу. Однако при фиксированном h каждая из них отличаются от соответствующего интеграла на величину
. По заданной предельной абсолютной погрешности
подбирается параметр n, или, что то же самое, шаг h, при котором выполняется неравенство
Величина (в предположении существования входящих в них производных) характеризуется равенством:
начало
Описание массивов X(100), Y(100)
Ввод: a, q, EXP, Dx, XN, N, ZN, ZK
J = 1
X(J) = XN
XJ = X(J)
S = INTEGR( a, XJ, EPS, ZN, ZK)
Y(J) = S*cos( X(J) )+q*sin( X(J) )
J = J + 1
X(J) = X(J - 1) + Dx
да
J <= N
Вывод: ( X(J), J=1, N ), ( Y(J), J=1, N )
конец
1. Описание массивов X, Y
2. Ввод данных: a, q, EPS, Dx, XN, N, ZN, ZK
3. Счетчик цикла J, присваивание начального значения переменной X(J).
4. Присваивание значения переменной XJ.
5. Обращение к подпрограмме S=INTEGR(a, XJ, EPS, ZN, ZK)
6. Присваивание значений переменным Y(J), J, X(J).
7. Окончание цикла J.
8. Ввывод данных ( X(J), J=1, N ), ( Y(J), J=1, N ).
Начало ПП S = INTEGR( a, XJ, EPS, ZN, ZK )
I1 = 1
K = 1
I2 = 0
H = ( ZK - ZN ) / K
I = 2
Z2 = ZN + I*H, Z1 = Z2 - H, Z0 = Z1 - H
L2 = ln( XJ + a*Z2 ),
L1 = ln( XJ + a*Z1 ),
L0 = ln( XJ + a*Z0 ),
I2 = I2 + L0 + 4*L1 + L2
да
I<=K
I = I + 2 да
| I1 - I2 | < EPS
I1 = I2
K = 2*K INTEGR = I2
возврат
ПП INTEGR предназначена для вычисления интеграла при заданной точности и заданных приделах интегрирования.
Список формальных параметров:
a - параметр функции, величина действительного типа.
XJ - аргумент функции у = S * cos(x) + q * sin(x), величина действ-ого типа.
EPS - точность вычисления интеграла, величина действительного типа.
ZN - нижний предел интегрирования, величина действительного типа.
ZK - верхний предел интегрирования, величина действительного типа.
1. Присваивание начального значения I1, K.
2. Присваивание начального значения I2, H, счетчик цикла I.
3. Присваивание значений переменным Z2, L2, L1, L0, I2 - накопитель суммы.
4. Присваивание значения переменной I.
5. Окончание цикла I.
6. Проверка условия | I1 - I2 | < EPS.
7. Присваивание значения переменной I1, K.
8. Присваивание значения переменной INTEGR.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.