30994-1 (663196), страница 2

Файл №663196 30994-1 (Развитие суперкомпьютеров) 2 страница30994-1 (663196) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В начале 80-х годов свет увидели сразу три семейства суперЭВМ японского производства, причем каждый суперкомпьютер из Страны Восходящего Солнца имел свою архитектурную изюминку. Во-первых, во всех японских суперЭВМ по сравнению с CRAY-1 было увеличено число скалярных и векторных регистров (например, NEC SX располагает 256 скалярными и 256 векторными регистрами против восьми регистров обоих типов в CRAY-1). За счет этого удалось снизить нагрузку на оперативную память системы, а также, что значительно существеннее, получить большие возможности для эффективной векторизации программ. Еще одно интересное новшество ввели разработчики суперЭВМ семейства NEC SX, объединив векторную архитектуру "регистр-регистр" с принципом многоконвейерной обработки, ранее реализованном в суперкомпьютерах STAR-100, CYBER-203 и CYBER-205 фирмы Control Data.

Правда, здесь следует отметить следующее : во-первых, многоконвейерная обработка требует установки дополнительных модулей, что увеличивает стоимость центрального процессора, во-вторых, исполнение одной векторной команды на нескольких параллельных конвейерах приводит к возрастанию доли непроизводительных временных затрат на запуск команды, подготовку операндов и запись результата. Например, если конвейер, выполняющий одну элементарную операцию за пять тактов, заменить на четыре таких же конвейера, то при длине векторов в 100 элементов векторная команда ускоряется всего в 3,69, а не в 4 раза. Эффект "отставания" роста производительности от увеличения числа конвейеров особенно заметен, когда процессор затрачивает значительное время на обмен данными между конвейером и памятью. Это обстоятельство не было должным образом оценено при разработке CYBER-205, и в результате архитектура "память-память" данной модели настолько ухудшила динамические параметры четырех конвейеров ее векторного процессора, что для достижения производительности, близкой к 200 MFLOPS, потребовалась очень высокая степень векторизации программ (порядка 1 тыс. элементов в векторе), т.е. потенциально самая мощная суперЭВМ 70-х годов реально могла эффективно обрабатывать только ограниченный класс задач. Конечно, подобный просчет негативно отразился на рыночной судьбе CYBER-205 и на всей программе суперЭВМ компании Control Data. После CYBER-205 фирма CDC прекратила попытки освоения рынка суперЭВМ.

Использование в суперкомпьютерах NEC SX архитектуры "регистр-регистр" позволило нейтрализовать недостатки многоконвейерной обработки, и модель NEC SX-2 с 16 векторными конвейерами стала первой суперЭВМ, преодолевшей рубеж в миллиард операций с плавающей точкой за секунду - ее пиковая производительность составила 1,3 GFLOPS. Фирма Hitachi пошла по другому пути. В суперкомпьютерах серии S-810 ставка была сделана на параллельное выполнение сразу шести векторных команд. Далее Hitachi, продолжает линию этого семейства моделями S-810/60 и S-810/80; последняя занимает достойное третье место по результатам тестирования производительности на пакете LINPACK, уступая только грандам из CRAY и NEC. Относительную коммерческую стабильность суперкомпьютеров Hitachi можно объяснить тем, что они, как и суперЭВМ фирмы Fujitsu, полностью совместимы с системой IBM/370 по скалярным операциям. Это позволяет применять программы, созданные на IBM VS FORTRAN и в стандарте ANSI X3.9 (FORTRAN 77), а также использовать стандартную операционную среду MVS TSO/SPF и большинство системных расширений IBM, включая управление вводом/выводом для IBM-совместимых дисковых и ленточных накопителей. Другими словами, японские суперЭВМ фирм Hitachi и Fujitsu первыми в мире суперкомпьютеров использовали дружественный интерфейс для пользователей наиболее распространенной в то время вычислительной системы - IBM/370.

Натиск японских производителей был впечатляющим, но тут С. Крей наносит своевременный контрудар - в 1982 г. на рынке появилась первая модель семейства суперкомпьютеров CRAY X-MP, а двумя годами позже в Ливерморской национальной физической лаборатории им. Лоуренса был установлен первый экземпляр суперЭВМ CRAY-2. Машины от Cray Research опередили конкурентов в главном - они ознаменовали зарождение нового поколения ЭВМ сверхвысокой производительности, в которых векторно-конвейерный параллелизм дополнялся мультипроцессорной обработкой. Крей применил в своих компьютерах неординарные решения проблемы увеличения производительности. Сохранив в CRAY-2 и CRAY X-MP архитектуру и структурные наработки CRAY- 1, он сокрушил конкурентов сразу на двух фронтах: достиг рекордно малой длительности машинного цикла (4,1 нс ) и расширил параллелизм системы за счет мультипроцессорной обработки. В итоге Cray Research сохранила за собой звание абсолютного чемпиона по производительности: CRAY-2 продемонстрировала пиковую производительность 2 GFLOPS, обогнав NEC SX-2 - самую быструю японскую суперЭВМ - в полтора раза. Для решения проблемы оптимизации машинного цикла Крей пошел дальше японцев, которые уже владели технологией ECL-БИС, позволившей в Fujitsu VP достичь длительности машинного цикла в 7,5 нс. Помимо того что в CRAY-2 были использованы быстродействующие ECL-схемы, конструктивное решение блоков ЦП обеспечивало максимальную плотность монтажа компонентов. Для охлаждения такой уникальной системы, которая выделяла ни много ни мало 195 кВт, была использована технология погружения модулей в карбид фтора - специальный жидкий хладагент производства американской фирмы 3M.

Второе революционное решение, реализованное в суперкомпьютере CRAY- 2, заключалось в том, что объем оперативной памяти был доведен до 2 Гбайт. С.Крею удалось выполнить критерий балансировки производительности и емкости оперативной памяти по Флинну: "Каждому миллиону операций производительности процессора должно соответствовать не менее 1 Мбайт емкости оперативной памяти". Суть проблемы заключается в том, что типичные задачи гидро- и аэродинамики, ядерной физики, геологии, метеорологии и других дисциплин, решаемые с помощью суперЭВМ, требуют обработки значительного объема данных для получения результатов приемлемой точности. Eстественно, при таких объемах вычислений относительно малая емкость оперативной памяти вызывает интенсивный обмен с дисковой памятью, что в полном соответствии с законом Амдала ведет к резкому снижению производительность системы.

Все-таки новый качественный уровень суперкомпьютера CRAY-2 определялся не столько сверхмалой длительностью машинного цикла и сверхбольшой емкостью оперативной памяти, сколько мультипроцессорной архитектурой, заимствованной у другой разработки Cray Research - семейства многопроцессорных суперЭВМ CRAY X-MP. Его три базовые модели - X-MP/1, X-MP/2 и X-MP/4 - предлагали пользователям одно-, двух- или четырехпроцессорную конфигурацию системы с производительностью 410 MFLOPS на процессор. Спектр доступных вариантов расширялся за счет возможности установки памяти разного объема (от 32 до 128 Мбайт на систему). Такой ориентированный на рынок подход к построению суперкомпьютера впоследствии принес фирме Cray Research ощутимый коммерческий эффект. Мультипроцессорная архитектура суперкомпьютеров производства CRAY была разработана с учетом достижений и недостатков многопроцессорных мэйнфреймов, в первую очередь фирмы IBM. В отличие от "классических" операционных систем IBM, которые используют для взаимодействия процессов механизм глобальных переменных и семафоров в общей памяти, мультипроцессорная архитектура CRAY предполагает обмен данными между процессорами через специальные кластерные регистры, кроме того, для обслуживания взаимодействия процессов в архитектуре CRAY предусмотрены аппаратно-реализованные семафорные флажки, которые устанавливаются, сбрасываются и анализируются с помощью специальных команд, что также ускоряет межпроцессорный обмен и в итоге увеличивает системную производительность. В результате этих новшеств коэффициент ускорения двухпроцессорной суперЭВМ CRAY X-MP/2 по отношению к однопроцессорной CRAY X-MP/1 составляет не менее 1,86.

В отличие от семейства CRAY X-MP, модели которого работают под управлением операционной системы COS (Cray Operating System), CRAY-2 комплектовалась новой операционной системой CX-COS, созданной фирмой Cray Research на базе Unix System V.

Во второй половине 80-х годов Control Data, "сошедшая с дистанции" после неудачи с моделью CYBER-205 вновь появляется на рынке сперЭВМ. Строго говоря, за разработку новой восьмипроцессорной суперЭВМ взялась ETA Systems - дочерняя фирма CDC, - однако в этом проекте был задействован практически весь потенциал Control Data. Вначале проект под названием ETA-10, получивший поддержку правительства через контракты и дотации потенциальным пользователям вызвал оживление среди специалистов по сверхскоростной обработке. Ведь новая суперЭВМ должна была достичь производительности в 10 GFLOPS, т.е. в пять раз превзойти CRAY-2 по скорости вычислений. Первый образец ETA-10 с одним процессором производительностью 750 MFLOPS был продемонстрирован в 1988 г., однако дальше дела пошли хуже. Во втором квартале 1989 г. Control Data объявила о свертывании деятельности компании ETA Systems из-за нерентабельности производства.

Не остался в стороне от проблем сверхвысокой производительности и гигант компьютерного мира - фирма IBM. Не желая уступать своих пользователей конкурентам из Cray Research, компания приступила к программе выпуска старших моделей семейства IBM 3090 со средствами векторной обработки (Vector Facility). Самая мощная модель этой серии - IBM 3090/VF-600S оснащена шестью векторными процессорами и оперативной памятью емкостью 512 Мбайт. В дальнейшем эта линия была продолжена такими машинами архитектуры ESA, как IBM ES/9000-700 VF и ES/9000-900 VF, производительность которых в максимальной конфигурации достигла 450 MFLOPS.

Еще одна известная в компьютерном мире фирма - Digital Equipment Corp. - в октябре 1989 г. анонсировала новую серию мэйнфреймов с векторными средствами обработки. Старшая модель VAX 9000/440 оснащена четырьмя векторными процессорами, повышающими производительность ЭВМ до 500 MFLOPS.

Высокая стоимость суперЭВМ и векторных мэйнфреймов оказалась не по карману достаточно широкому кругу заказчиков, потенциально готовых воспользоваться компьютерными технологиями параллельных вычислений. К их числу относятся мелкие и средние научные центры и университеты, а также производственные компании, которые нуждаются в высокопроизводительной, но сравнительно недорогой вычислительной технике.

С другой стороны, такие крупнейшие производители суперЭВМ, как Cray Research, Fujitsu, Hitachi и NEC, явно недооценили потребности "средних" пользователей, сосредоточившись на достижении рекордных показателей производительности и, к сожалению, еще более рекордной стоимости своих изделий. Весьма гибкой оказалась стратегия Control Data, которая после неудачи с CYBER-205 основное внимание уделила выпуску научных компьютеров среднего класса. На конец 1988 г. производство машин типа CYBER-932 вдвое превысило выпуск старших моделей серии CYBER-900 и суперЭВМ с маркой CDC. Основным конкурентом Control Data на рынке малогабаритных параллельных компьютеров, которые получили общее название "мини-суперЭВМ", стала будущий лидер в мире мини-суперкомпьютеров фирма Convex Computer. В своих разработках Convex первой реализовала векторную архитектуру с помощью сверхбольших интегральных схем (СБИС) по технологии КМОП. В результате пользователи получили серию относительно недорогих компьютеров по цене менее 1 млн. долл., обладающих производительностью от 20 до 80 MFLOPS. Спрос на эти машины превзошел все ожидания. Явно рискованные инвестиции в программу Convex обернулись быстрым и солидным доходом от ее реализации. История развития суперкомпьютеров однозначно показывает, что в этой сложнейшей области инвестирование высоких технологий, как правило, дает положительный результат - надо только, чтобы проект был адресован достаточно широкому кругу пользователей и не содержал слишком рискованных технических решений. Convex, которая, получив такое преимущество на старте, стала успешно развиваться. Сначала она выпустила на рынок семейство Convex C-3200, старшая модель которого C-3240 имеет производительность 200 MFLOPS, а затем - семейство Convex C-3800, состоящее из четырех базовых моделей в одно-, двух- , четырех- и восьмипроцессорной конфигурации. Самая мощная машина этой серии Convex C-3880 имеет производительность, достойную "настоящей" суперЭВМ 80-х годов, и при тестировании на пакете LINPACK обогнала по скорости вычислений такие системы, как IBM ES/9000-900 VF, ETA-10P и даже CRAY-1S. Отметим, что Cray Research, выпускает мини-суперЭВМ CRAY Y-EL, также реализованную на технологии КМОП-СБИС. Этот компьютер может поставляться в одно-, двух- или четырехпроцессорной конфигурации и обеспечивает производительность 133 MFLOPS на процессор. Объем оперативной памяти изменяется в зависимости от пожеланий заказчика в диапазоне 256-1024 Мбайт.

Доминирование векторных суперкомпьютеров в государственных программах и устойчивое положение "царя горы", занятое Cray Research, явно не устраивало сторонников MIMD-параллелизма. Первоначально в этот класс были включены многопроцессорные мэйнфреймы, а впоследствии к ним добавились суперЭВМ третьего поколения с мультипроцессорной структурой. И те и другие основаны на сформулированном фон Нейманом принципе управления вычислительным процессом по командам программы, или управления потоком команд (Instruction Flow). Однако примерно с середины 60-х годов математики стали обсуждать проблему разбиения задачи на большое число параллельных процессов, каждый из которых может обрабатываться независимо от других, а управление выполнением всей задачи осуществляется путем передачи данных от одного процесса к другому. Этот принцип, известный как управление потоком данных (Data Flow), в теории выглядит очень многообещающим. Теоретики DataFlow-параллелизма предполагали, что систему можно будет организовать из небольших и потому дешевых однотипных процессоров. Достижение сверхвысокой производительности целиком возлагалось на компилятор, осуществляющий распараллеливание вычислительного процесса, и ОС, координирующую функционирование процессоров. Внешняя простота принципа MIMD-параллелизма вызвала к жизни множество проектов.

Из наиболее известных разработок систем класса MIMD стоит упомянуть IBM RP3 (512 процессоров, 800 MFLOPS), Cedar (256 процессоров, 3,2 GFLOPS; компьютер одноименной фирмы), nCUBE/10 (1024 процессора, 500 MFLOPS) и FPS-T (4096 процессоров, 65 GFLOPS). К сожалению, ни один из этих проектов не завершился полным успехом и ни одна из упомянутых систем не показала объявленной производительности. Дело в том, что, как и в случае с матричными SIMD-суперкомпьютерами, слишком много технических и программных проблем было связано с организацией коммутатора, обеспечивающего обмен данными между процессорами. Кроме того, процессоры, составляющие MIMD- систему, оказались на практике не столь уж маленькими и дешевыми. Как следствие, наращивание их числа приводило к такому увеличению габаритов системы и удлинению межпроцессорных связей, что стало совершенно очевидно: при существовавшем в конце 80-х годов уровне элементной базы реализация MIMD-архитектуры не может привести к появлению систем, способных конкурировать с векторными суперкомпьютерами.

Характеристики

Тип файла
Документ
Размер
168,25 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6624
Авторов
на СтудИзбе
295
Средний доход
с одного платного файла
Обучение Подробнее