43957 (662945), страница 2
Текст из файла (страница 2)
Тактовая частота шины [bus clock, bus frequency] измеряется в МГц и определяет, сколько раз за секунду может быть передана порция данных. Размер этой порции определяется разрядностью шины, которая измеряется в битах. Произведение разрядности на частоту определяет теоретическую пропускную способность шины.
Пример
Наиболее широко используемой в настоящее время является шина PCI (Peripheral Component Interconnect). Устаревшая шина ISA (Industry Standard Architecture) или AT-шина до сих пор используется по причинам обеспечения совместимости. Основные характеристики приведены в табл. 2.2.
Таблица 2. Характеристики системных шин
Название | Частота, МГц | Разрядность данных | Разрядность адреса | Мбайт/с |
PC XT | 4,77 | 8 | 20 | 5 |
ISA | 8 | 16 | 24 | 8 |
PCI | 33 | 32,64 | 32 | 80,160 |
Центральный процессор
Центральный процессор [processor, CPU] – устройство, непосредственно осуществляющее процесс обработки данных. Основная задача процессора – это интерпретация команд и рассылка соответствующих управляющих сигналов к другим устройствам. Процессоры в ПЭВМ выполнены в виде одной микросхемы и потому называются также микропроцессорами.
Основные характеристики процессора:
тактовая частота;
длина слова (разрядность);
архитектура.
Тактовая частота процессора [CPU speed (clock, frequency)] число элементарных операций - тактов, выполняемых в течение одной секунды. В современных ПЭВМ под тактовой частотой понимается внутренняя частота. Обмен данными с внешним миром осуществляется на частоте системной шины, которая всегда меньше внутренней частоты процессора. Тактовая частота грубо характеризует скорость работы процессора.
Длина слова (разрядность процессора) – это максимальное количество разрядов двоичного кода, которые могут передаваться или обрабатываться одновременно за один такт. Все современные микропроцессоры 32 или 64 разрядные.
Пример
Применительно к ПЭВМ понятие «разрядность» включает:
разрядность внутренних регистров (внутренняя длина слова);
разрядность шины данных (внешняя длина слова);
разрядность шины адреса.
Разрядность внутренних регистров определяет формат команд процессора и размер данных, с которыми можно оперировать в командах.
Разрядность шины данных определяет скорость передачи информации между процессором и другими устройствами.
Разрядность шины адреса определяет размер адресного пространства, т.е. максимальное число байтов, к которым можно осуществить доступ. Например, если разрядность шины адреса равна 16, то возможный размер памяти в ЭВМ равен 216=65536 или 65 Кб.
Архитектура процессора – это очень ёмкое понятие, в составе которого можно рассматривать следующие элементы:
система команд;
способ организации вычислительного процесса;
поддержка мультипроцессорности.
Система команд [instruction set] – полный список кодов операций, которые способен выполнять процессор. По составу команд различают: CISC-архитектуру [Complex Instructions Set Computer] и RISC-архитектуру [Reduced Instructions Set Computer].
Большинство ЭВМ использует CISC-архитектуру. Основная идея RISC – так упростить команды процессора, чтобы они могли быть выполнены за один такт. Это позволяет спроектировать очень эффективный конвейер команд.
Набор команд процессора определяет его функциональное назначение, в соответствии с которым различают универсальные и специализированные процессоры.
Универсальный процессор способен реализовать любой алгоритм и используется в качестве центрального процессора. Специализированный процессор служит для решения задач определённого класса. Среди таких сопроцессоров можно выделить математические и графические процессоры.
С системой команд связано такое важное свойство, как совместимость. Два процессора называются совместимыми [compatible], если их системы команд одинаковы.
Пример
Программу ускорения клавиатуры можно записать в машинном языке:
B8 05 03 BB-00 00 CD 16-CD 20
или в переводе на автокод
B80503 mov ax,00305
BB0000 mov bx,00000
CD16 int 16
CD20 int 20
Данная программа использует систему команд процессора Intel8086 и без изменений может быть перенесена на процессоры Intel 80286, 80386, 80486, Pentium I, Pentium II, Pentium III. Поэтому все эти процессоры называются совместимыми снизу вверх. Сверху вниз эти процессоры несовместимы, так как, например, Pentium III имеет команды, которые не поддерживаются процессором Pentium I.
Для повышения эффективности вычислительного процесса в современных микропроцессорах применяется конвейерная и суперскалярная обработки данных.
Процессор может иметь устройства, которые позволяют использовать его в многопроцессорной конфигурации. Работа в мультипроцессорном режиме обеспечивается как архитектурой процессора, так и возможностями операционной системы. Например, Windows95 не имеет такой поддержки, а Windows NT Server поддерживает четыре процессора.
Пример
Архитектура микропроцессора Pentium имеет следующие особенности:
суперскалярная конвейерная архитектура;
конвейерное вычисление с плавающей точкой;
поддержка мультипроцессорности;
повышенная разрядность внешней шины данных.
Разрядность регистров – 32 бит, шины адреса - 32 бит, шины данных - 64 бит. Производительность микропроцессора Pentium I с тактовой частотой 66 МГц оценивается в 112 MIPS.
Оценка производительности различных микропроцессоров приведена в табл. 2.3.
Таблица 3. Сравнение микропроцессоров
Процессор | Частота, МГц | Тип | SPECint92 | SPECfp92 | |||||
PA RISC | 200 | RICS | 360 | 550 | |||||
Alpha 21164 | 300 | RISC | 330 | 500 | |||||
PowerPC | 133 | RISC | 225 | 300 | |||||
PowerPC | 66 | RISC | 48 | 84 | |||||
Pentium II | 133 | CISC | 200 | 200 | |||||
Pentium I | 133 | CISC | 148 | 110 | |||||
Pentium I | 66 | CISC | 65 | 57 | |||||
Intel 486 DX2 | 66 | CISC | 32 | 16 |
Источник: www.citforum.ru.
Микропроцессор Celeron в отличие от Pentium не может работать в мультипроцессорном режиме.
Современные микропроцессоры имеют внутреннюю частоту порядка 900 МГц.
Внешняя и внутренняя память
Память [memory, storage] – часть ЭВМ, предназначенная для приёма, хранения и выдачи данных. Различают внутреннюю и внешнюю память.
Внутренняя память [internal storage] конструктивно выполняется в виде модулей, представляющих собой несколько микросхем на небольшой плате и предназначено для хранения промежуточных данных, к которым необходим максимально быстрый доступ. Гораздо чаще внутреннюю память именуют оперативной памятью, сокращённо - ОЗУ [Random Access Memory - RAM], или основной памятью [main memory].
Микросхемы основной памяти всегда работают медленнее процессора. Поэтому процессору часто приходится делать пустые такты, ожидая поступления данных из памяти. Чтобы частично решить эту проблему, используется память небольшого размера (порядка 128 – 512 Кб), которая выполнена на базе более скоростных (и более дорогих) микросхем памяти. Такая память называется кешем [caсhe] или сверхоперативной памятью.
Внешняя память [external storage] – реализуется на внешних запоминающих устройствах.
Основными характеристиками памяти являются: ёмкость, время доступа, стоимость хранения единицы информации.
Пример
Микросхемы памяти в современных ПЭВМ могут работать на частоте порядка 100 МГц, что соответствует времени доступа 10 нс. Типичный объём основной памяти для большинства ПЭВМ - 64 Мб.
Внешние устройства
Как правило, внешние (периферийные) устройства [external (peripheral) device (unit)] ЭВМ делятся на устройства ввода, устройства вывода и внешние запоминающие устройства (ЗУ). Основной обобщающей характеристикой внешних устройств может служить скорость передачи данных (см. табл. 2.4).
Для подключения внешних устройств к процессору и для управления ими используется стандартная система правил – интерфейс. Фактическим стандартом для подключения любой периферии является SCSI-интерфейс [Small Computer System Interface]. Для подключения жёстких дисков используется также IDE-интерфейс [Integrated Device Electronics].
Таблица 4. Внешние устройства
Тип устройства | Направление передачи данных | Скорость передачи Кбайт/с |
Клавиатура | ввод | 0,01 |
Мышь | ввод | 0,02 |
Голосовой ввод | ввод | 0,02 |
Сканер | ввод | 200 |
Голосовой вывод | вывод | 0,06 |
Строчный принтер | вывод | 1,00 |
Лазерный принтер | вывод | 100 |
Оптический диск | ЗУ | 4800 |
Магнитная лента | ЗУ | 2000 |
Магнитный диск | ЗУ | 15000 |
Флоппи диск | ЗУ | 40 |
Источник: www.citforum.ru.
Внешние запоминающие устройства
В качестве внешней памяти в ПЭВМ применяются носители, использующие различные физические принципы.
Магнитные диски - [magnetic disk] – это основные носители информации внешней памяти ПЭВМ. Среди всех других внешних запоминающих устройств накопители на жёстких магнитных дисках - НЖМД или винчестеры [hard disk drive – HDD] отличаются наибольшей скоростью передачи данных. Однако надёжность хранения информации на магнитных дисках не слишком высока. Поэтому в серверах используются специальные устройства, состоящие из нескольких жёстких дисков – RAID-системы [redundant array of inexpensive disks]. Надёжность повышается за счёт избыточного хранения информации. Гибкие магнитные диски [floppy disk] – это основные переносные носители. Надёжность хранения информации невысока и ёмкость невелика. Большое преимущество гибких дисков перед другими переносными носителями заключается в низкой их стоимости.
Магнитные ленты [magnetic tape] – это основные носители для резервного копирования данных и архивирования. Отличаются высокой надёжностью, относительно низкой стоимостью, но невысокой скоростью передачи данных.
Оптические диски [optical disk] – эти носители также используются для резервного копирования и архивирования. Устройства чтения-записи магнитных лент именуются стриммером. Они обладают очень высокой надёжностью хранения, но стоимость хранения единицы информации гораздо дороже, чем у магнитных лент.
Пример
Современные жесткие диски имеют ёмкость порядка 10 Гб. Гибкие диски имеют несколько форматов 720 Кб, 1,44 Мб и 2,88 Мб. Среди магнитных лент наиболее часто используются ленты ёмкостью 3-5Гб. Оптические диски имеют ёмкость 650 Мб.
Стоимость хранения 1 Мб на 2000 г. для жёстких дисков составляет 0,2 долл., для магнитооптических - 0,15 долл., для оптических – 0,14 долл., для магнитных лент – 0,03 долл.
Источник: www.citforum.ru.
Внешние устройства ввода-вывода