7742-1 (662900), страница 2

Файл №662900 7742-1 (Дискретные цепи) 2 страница7742-1 (662900) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Импульсную характеристику можно определить по известной передаточной функции, применяя

а. обратное Z-преобразование,

б. теорему разложения,

в. теорему запаздывания к результатам деления полинома числителя на полином знаменателя.

Последний из перечисленных способов относится к численным методам решения поставленной задачи.

Пример. Определить импульсную характеристику цепи на рис.(2.6,б) по передаточной функции.

Решение.

Здесь H(Z) = .

Разделим числитель на знаменатель

Применяя к результату деления теорему запаздывания, получаем

h(nT) = {0 ; 0,4 ; -0,032 ; 0.00256 ; ...}

Сравнивая результат с расчетами по разностному уравнению в предидущем примере, можно убедиться в достоверности расчетных процедур.

Предлагается определить самостоятельно импульсную реакцию цепи на рис.(2.6,а), применяя последовательно оба рассмотренных метода.

В соответствии с определением передаточной функции, Z - изображение сигнала на выходе цепи можно определите как произведение Z - изображения сигнала на входе цепи и передаточной функции цепи:

Y(Z) = X(Z)ЧH(Z). (2.11)

Отсюда, по теореме о свертке, свертка входного сигнала с импульсной характеристикой дает сигнал на выходе цепи

y(nT) = x(kT)Чh(nT - kT) = h(kT)Чx(nT - kT). (2.12)

Определение выходного сигнала по формуле свертки находит применение не только в расчетных процедурах, но и в качестве алгоритма функционирования технических систем.

Пример.

Определить сигнал на выходе цепи, схема которой приведена на рис.(2.6,б), если x(nT) = {1,0; 0,5}.

Решение.

Здесь h(nT) = {0 ; 0,4 ; -0,032 ; 0,00256 ; ...}

Расчёт по (2.12)

n=0 : y(0T) = h(0T)x(0T) = 0;

n=1 : y(1T) = h(0T)x(1T) + h(1T) x(0T) = 0,4;

n=2 : y(2T)= h(0T)x(2T) + h(1T) x(1T) + h(2T) x(0T) = 0,168;

Таким образом y(nT) = { 0; 0,4; 0,168; ... }.

В технических системах вместо линейной свертки (2.12) чаще применяется круговая или циклическая свертка .

Круговая свёртка

Реальным сигналам соответствуют числовые последовательности конечной длины. Конечную числовую последовательность можно продолжить по оси времени путём периодического повторения и получить периодическую числовую последовательность. Периодической числовой последовательности соответствует спектр в виде периодической числовой последовательности. Обе последовательности имеют одинаковый период N и связаны формулами ДПФ.

Замена реальных последовательностей периодическими позволяет повысить эффективность использования вычислительной техники применительно к дискретным сигналам (скоростная свёртка, БПФ и др. )

Свёртка периодических последовательностей называется круговой и определяется на интервале равном одному периоду.

y(nT) = x(kT)Чh(nT - kT), (2.13)

Линейная и круговая свёртки дают одинаковый результат, если соответствующим образом выбрать в круговой свёртке размер исходных последовательностей. Дело в том, что свёртка конечных последовательностей приводит к последовательности, размер которой N превышает длину каждой из исходных последовательностей и, по определению, равен

N = N1 + N2 - 1, (2.14)

где N1 - длина последовательности x(nT),

N2 - длина последовательности h(nT).

Поэтому замена исходной последовательности на периодическую выполняется с таким расчётом, чтобы длина периода получилась равной N, добавляя с этой целью нули в качестве недостающих элементов.

Пример.

Вычислить круговую свёртку по данным примера в параграфе 2.4.

Решение.

Здесь, пренебрегая малыми значениями отсчётов представим импульсную реакцию в виде конечной числовой последовательности h(nT) ={0; 0,4 ; -0,032}.

Отсюда, поскольку x(nT) = {1,0; 0,5}, с учётом (2.14)

N1 = 2,N2 = 3,N = 4.

Следовательно исходные числовые последовательности запишутся так

x(nT) = {1,0; 0,5; 0; 0}, h(nT) ={0; 0,4; -0,032; 0}.

Отсюда, применяя (2.13), получаем

n=0: y(0T) = x(0T)h(0T) + x(1T)h(-1T) + x(2T)h(-2T) + x(3T)h(-3T) = 0;

n=1: y(1T) = x(0T)h(1T) + x(1T)h(0T) + x(2T)h(-1T) + x(3T)h(-2T) = 0,4;

n=2: y(0T) = x(0T)h(2T) + x(1T)h(1T) + x(2T)h(0T) + x(3T)h(-1T) = 0,168;

n=3: y(0T) = x(0T)h(3T) + x(1T)h(2T) + x(2T)h(1T) + x(3T)h(0T) = -0,016;

Следовательно y(nT)= {0; 0,4; 0,168; -0,016}, что совпадает с расчётами по линейной свёртке в примере параграфа 2.4.

Графики периодических числовых последовательностей x(nT), h(nT), y(nT) приведены на рис.(2.7).

К периодическим числовым последовательностям, полученным изложенным выше способом, можно применить ДПФ, перемножить результаты и после выполнения обратного ДПФ получить последовательность y(nT), совпадающую с результатами расчётов по круговой свёртке.

Энергия дискретного сигнала

Корреляция и энергетический спектр.

В качестве энергии дискретного сигнала принята мера

Wx = x2(nT), (2.15)

соответственно в частотной области, согласно равенству Парсеваля,

Wx = X2(w)dw = X(jw)X*(jw)d(jw), (2.16)

где X(jw) = X(w)ejj(w) - спектр сигнала x(nT),

X*(jw) = X(w)e-jj(w) - спектр x(-nT) в соответствии с теоремой о спектре инверсного сигнала,

X2(w) = X(jw)ЧX*(jw) = Sx(jw) - энергетический спектр сигнала x(nT).

На рис.(2.8) показан в качестве примера сигнал x(nT) и его инверсная копия x(-nT) для некоторого частного случая

Энергетический спектр выражает среднюю мощность сигнала x(nT), приходящуюся на узкую полосу частот в окрестности переменной w.

Во временной области энергетическому спектру соответствует свертка инверных сигналов, что определяет корреляционную функцию Sx(nT) сигнала x(nT).

. (2.17)

Согласно (2.17) и (2.15) корреляционная функция в точке n = 0 равна энергии сигнала, т. е.

(2.18)

Для периодических дискретных сигналов корреляционная функция и энергетический спектр связаны формулами ДПФ

. (2.19)

Отсюда получаются расчётные формулы энергии периодических дискретных последовательностей

, (2.20)

что соответствует равенству Парсеваля для дискретных периодических сигналов. Корреляционная функция таких сигналов определяется по формуле круговой свёртки

.

Расчет энергии дискретного сигнала можно выполнить при необходимости, применяя равенство Парсеваля относительно Z - изображений сигнала и его инверсной копии (теорема энергий)

, (2.21)

где - Z - изображение корреляционной функции.

Уместно заметить, что применительно к случайным сигналам корреляционная функция чаще определяется формулой с весовым множителем , т.е.

,

соответственно для энергетического спектра

,

что приводит к результату, при котором среднее значение случайной величины с ростом N сходится к постоянной величине.

Свертка сигнала с инверсной копией другого сигнала называется взаимной корреляцией этих сигналов.

Расчёт энергии сигнала в дискретной цепи.

В любой точке дискретной цепи энергию сигнала можно вычислить по известному сигналу или по корреляционной функции сигнала в этой точке. Корреляционную функцию сигнала в некоторой точке цепи можно определить не только по известному сигналу, но и по известной корреляционной функции входного сигнала и импульсной реакции

, (2.22)

где - корреляционная функция сигнала на входе цепи,

- корреляционная функция импулсного отклика в данной точке,

- условный знак свёртки.

Докажем равенство (2.22).

.

В этом выражении в силу линейности цепи сигналы можно сочетать различными способами. Поэтому

,

что доказывает справедливость (2.22). Следовательно

. (2.23)

Автокорреляционная функция является чётной функцией, поэтому применяя круговую свёртку (2.22), периоды и необходимо выровнять с таким расчетом, чтобы сохранить чётный характер этих функций.

Пример. Определить энергию сигнала на выходе цепи, если

x(nT) = {0,5; 0,5}, h(nT) = {1,0; 0,5}.

Решение.

1. Расчет во временной области.

Определяем сигнал на выходе цепи по формуле круговой свёртки

Отсюда .

2. Расчёт в частотной области.

Вначале необходимо определить отсчёты спектра сигнала по формуле прямого ДПФ

.

Отсюда, согласно равенству Парсеваля,

.

3. Расчёт по формуле (2.23).

Определяем корреляционные функции и .

Следовательно, .

увеличивая период и до N=5, получаем

, .

На рис.(2.9,а) показана периодическая последовательность до увеличения периода, на рис. (2.9,б) - после увеличения периода .

Согласно (2.22)

.

Отсюда .

Характеристики

Тип файла
Документ
Размер
4,97 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6629
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее