4479-1 (662818), страница 2

Файл №662818 4479-1 (Генетический алгоритм глобальной трассировки) 2 страница4479-1 (662818) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Затем для каждого rij синтезируется набор Vij вариантов маршрутов в ортогональном графе G, реализующих ребро rij. Пусть nij=| Vij | - число вариантов реализации ребра rij.

Определяется длина L хромосомы, являющейся носителем информации о конкретном решении:

Параметр L определяет число генов в хромосоме. С помощью графика соответствия Q устанавливается соответствие Г(G, Q, R) между генами хромосомы и ребрами минимальных связывающих деревьев для всех цепей.

G={gn| n=1, 2,… ,L}; R={rij| i=1, 2, … ,ni, j=1,2, … ni}

Образом Г(rij) является ген gn. Прообразом Г­­-1(gn) является ребро rij Значением гена gn, будет номер варианта реализации ребра rij=Г­­-1(gn) .

Ген gn может принимать любое значение от 1 до nij.

В работе используется принцип случайного формирования исходной популяции.

Для этого в пределах каждой хромосомы Нк каждый ген gn принимает случайное значение в пределах от 1 до nij , где nij число вариантов реализации ребра rij-1(gn).

Управляемыми параметрами при формировании популяции является М - размер популяции, nmax - максимальное число вариантов реализации ребер, т.е. (ij) [nij nmax]. Если возможное число вариантов nij больше nmax то возникает возможность формирования альтернативных наборов вариантов Vij для rij. Кроме того существует возможность построения альтернативных МСД Di для одной и той же цепи ti.

Все это дает возможность для комбинирования при синтезе исходной популяции. Известно, что для выхода из локальных оптимумов используется механизм смены исходных популяций.

В простейшем случае это можно реализовать с помощью повторной, случайной генерации.

3.3 Генетические операторы

Для получения нового решения (индивидуальности) используются генетические операторы: кроссинговер и мутация.

Кроссинговер заключается во взаимном обмене генами между «родителями» - хромосомами предварительно выбранной пары.

В нашем случае все хромосомы гомологичны, т.к. имеют одну и ту же структуру, одну и ту же длину и несут информацию об одном и том же наборе МСД. Гены, расположенные в одном и том же локусе хромосом, гомологичны, т.к. несут информацию об одном и том же ребре хромосомы.

Предварительно задается величина PK – вероятность кроссинговера и вводится флажок FG с двумя состояниями «выполнять», «не выполнять». Исходное состояние FG «не выполнять». При выполнении кроссинговера последовательно просматриваются локусы выбранной пары хромосом. С вероятностью Pk «флажок» FG переходит в состояние «выполнять». Если FG перешел в состояние «выполнять», то производится обмен генами между парой хромосом в текущем локусе, далее «флажок» переходит в состояние «не выполнять», а затем осуществляется переход к следующему локусу.

Такой алгоритм кроссинговера обеспечивает мультиобмен. Число пар обменивающихся генов определяется параметром Pk.

Операция мутации заключается в изменении значения гена. Алгоритм мутации реализуется следующим образом.

Предварительно, для каждого гена gn, определяется диапазон его возможных значений от 1 до yn, где yn – число сформированных вариантов реализации ребра .

Задается параметр PM – вероятность мутации и «флажок» FG с двумя состояниями «выполнять» и «не выполнять». Исходное состояние FG – «не выполнять».

Последовательно выбираются хромосомы из текущей популяции. В пределах выбранной хромосомы последовательно просматриваются гены. После перехода к очередному гену, FG с вероятностью PM переходит в состояние «выполнять». Если FG перешел в состояние «выполнять», то случайным образом ген gn принимает одно из значений в заданном диапазоне, за исключением значения, которое ген имеет перед мутацией. Далее FG переходит в состояние «не выполнять» и выбирается следующий ген хромосомы, или следующая хромосома.

Для улучшения процесса поиска лучшего решения введем дифференцируемое значение показателя , принимающего различные значения в зависимости от значения гена.

Введем для гена gn оценку , где ln – число ребер u­i, входящих в маршрут vijk реализующий ребро , соответствующее гену gn. - число таких ui,, входящих в vijk ,для которых показатель загрузки ci имеет отрицательное значение.

Кn меняется от 0 до 1. Чем больше Kn, тем “хуже” маршрут vijk, и тем больше оснований к его смене.

Значение показателя с учетом Кn для гена gn определяется следующим образом

параметр связан с Pm следующим соотношением

,

т.е. меняется от 0 до (1-Pm).

В предельном случае

Как видно из алгоритмов, реализующих процедуры кроссинговера и мутации, временная сложность операторов кроссинговера и мутации применительно к одной хромосоме имеют линейную зависимость, , где L – длина хромосомы.

3.4 Общая структура генетического поиска для глобальной

трассировки

В соответствии с методикой описанной выше на первых подготовительных этапах осуществляется разбиение КП на плоскости. Для всех цепей строятся минимальные связывающие деревья. Для всех ребер МСД формируются наборы вариантов реализующих их соединений. Управляющими параметрами генетической адаптации являются: М – размер исходной популяции, Т – число генераций, PK – вероятность кроссинговера, Pm – вероятность мутации.

После сформирования исходной популяции Пи для каждой индивидуальности рассчитывается фитнесс.

Алгоритм расчета фитнесса имеет следующий вид: в качестве исходных данных используется вектор А={al| l=1,2, …}, где al – пропускная способность ребра ul. Для расчета фитнесса используется вектор B, имеющий ту же размерность, что и вектор А. Вначале элементы имеют нулевое значение. Вектор В служит для учета загрузки ребер Ur всеми цепями.

Значения растут последовательно и, после просмотра всех генов, bl является значением числа цепей, проходящих через ul.

Имея вектора А и В, рассчитываются значения показателей cl=al-bl для каждого ребра ul. На основании значений cl расcчитываются критерии F1, F2 и F3.

Если учесть, что число вариантов имеет фиксированное значение и обычно, не превышает 4-6, то трудоемкость подсчета вектора В линейна и пропорциональна длине хромосом. Трудоемкость процедуры поиска cmin также линейна. В связи с этим трудоемкость tф расчета фитнесса для одной хромосомы имеет линейную зависимость от длины хромосомы tфO(L).

После расчета фитнесса для исходной популяции применяется оператор кроссинговера.

Селекция родительских пар хромосом осуществляется либо на основе «принципа рулетки», либо на основе рейтинга популяции.

С этой целью все хромосомы популяции сортируются в соответствии с рассчитанными значениями фитнесса. После этого осуществляется селекция пары родственных хромосом по правилу: i - я с i+1 – ой.

Для каждой новой индивидуальности, образованной в результате кроссинговера, расчитывается фитнесс. После кроссинговера текущая популяция ПТ включает исходную ПИ и популяцию ПК , образовавшуюся в результате выполнения кроссинговера.

ПТИК.

Далее ко всем индивидуальнастям ПТ применяется оператор мутации. Для всех индивидуальностей популяции ПМ , образовавшихся в результате мутации расчитывается фитнесс. Заключительным этапом в пределах одного поколения является процесс редукции популяции ПТИКМ до размеров ПИ на основе селективного отбора. Селекция осуществляется на основе “принципа рулетки”.

Вероятность выбора индивидуальности определяется как:

С помощью коэффициентов Кi, которые для «лучших» индивидуальностей имеют большие значения, чем у «худших», достигаются увеличение вероятности выбора «лучших» индивидуальностей.

Временная сложность алгоритма определяется общими (подготовительными) затратами to и затратами в пределах каждого поколения td . Общие затраты складываются из затрат на построении минимальных связывающих деревьев td ,формирование вариантов реализации ребер tb ,и формирования исходной популяции tи: to=td+tb+tи.

Затраты на построение МСД находятся в зависимости от числа МСД. С другой стороны при построении конкретного МСД затраты пропорциональны квадрату числа связываемых вершин . Учитывая , что число ребер n всех МСД пропорционально числу МСД , можно считать, что оценка ВСА tо лежит в пределах О(n)-O(n2), причем чем больше n тем ближе к О(n).

Затраты в пределах поколения tn складываются из затрат на операторы кроссинговера tк , мутации tm ,расчета фитнесса tф и селекции tс .

Как уже указывалось выше затраты tк ,tм и tф при обработке одной хромосомы имеют линейную зависимость от n . tс имеет линейную зависимость от объема популяции М . Тогда временные затраты в пределах поколения имеют оценку О(nM). Для Т генераций временная сложность алгоритма имеет оценку О(nMT) . Учитывая что параметры М и Т сравнимы или значительно меньше n, можно считать , что оценка временной сложности всего алгоритма в целом лежит в пределах О(n2)-O(n3).

4. Экспериментальные исследования генетического алгоритма глобальной трассировки

Алгоритм глобальной трассировки был реализован на языке С++, экспериментальные исследования проводились на ЭВМ типа IBM PC/AT Pentium 133.

При проведении экспериментальных исследований преследовались две цели:

Первой целью являлось исследование механизмов генетического поиска для задачи глобальной трассировки. Для достижения этой цели исследовалось влияние управляющих операторов, таких как: размер популяции М, число поколений Т, вероятность мутации РМ, вероятность кроссинговера РК. В результате этих исследований определялось такое сочетание значений этих параметров, которое обеспечивает наивысшую эффективность генетических процедур для задачи глобальной трассировки.

Второй целью являлось исследование собственно, эффективности разработанного генетического алгоритма. Исследовались влияния таких параметров, как число вариантов маршрутов для каждого ребра.

Для проведения исследований были синтезированы 5 тестовых примеров.

Основные характеристики примеров.

Использовалось КП с размерами 10*10 (10 дискретов по горизонтали и 10 дискретов по вертикали). Выводы, связываемые цепями, размещались внутри дискретов. В каждом дискрете только один вывод одной цепи. Число выводов, связываемых одной цепью - от 2 до 5. В один дискрет назначалось до 10 выводов. Среднее число цепей - 200 -250. Назначение выводов в дискреты осуществлялось случайным образом.

Оптимизация проводилась по критерию:

F1= (i)[CminCi=i-i]

Если оказывалось, что Сmin0, то оптимизация автоматически переключалась на критерий F2 = m - , где - число ребер, проходящих через грани с отрицательным значением Сmin.

Для нахождения наилучшего сочетания таких параметров, как Рм, Рк, М и Т, а также для выбора последовательности и типа генетических операторов экспериментальные исследования проводились следующим образом:

Для каждого примера сначала фиксировался параметр Рм и изменялись параметры Рк и М. Проводилась серия из десяти экспериментов для каждого фиксированного набора параметров. Затем фиксировался параметр Рк. Формирование исходной популяции осуществлялось следующим образом. Для каждой цепи строилось МСД. Если в процессе его построения возможно несколько альтернатив, то выбиралась первая. Для каждого ребра каждого дерева формировался набор вариантов маршрутов. Для каждой хромосомы исходной популяции выбор вариантов осуществлялся случайным образом.

При проведении испытаний для каждого эксперимента фиксировался номер генерации, после которой не наблюдалось улучшения оценки. В каждой серии из десяти испытаний фиксировались минимальные, максимальные и средние числа генераций.

Для каждой серии испытаний определялось лучшее решение, которое фактически являлось оптимальным. Затем фиксировалось число испытаний, при которых были получены оптимальные решения, число испытаний при которых были получены решения отличающиеся от оптимальных менее чем на 5%, и число испытаний, при которых решения отличались от оптимального более чем на 5%.

Характеристики

Тип файла
Документ
Размер
902,33 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее