4141-1 (662808)

Файл №662808 4141-1 (Логический вывод на основе нечеткой метаимпликации)4141-1 (662808)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Логический вывод на основе нечеткой метаимпликации

О.А. Мелихова

В работе подробно рассмотрена суть логического вывода на основе нечеткой метаимпликации, с помощью примеров показана максиминная свертка нечетких отношений, используемая в моделях принятия решений и при распознавании нечетких образов.

При выполнении нечетких выводов используются нечеткие соответствия R, заданные между одной проблемной областью (множество X) и другой областью (множество Y) в виде нечеткого подмножества прямого произведения , определяемого по формуле [7,13]:

, (1.1)

где область отправления, область прибытия, функция принадлежности нечеткому соответствию R, а знак означает совокупность (объединение) множеств.

Если существует правило типа “если A, то B”, использующее нечеткие множества A и B , то один из способов построения нечеткого соответствия R состоит в следующем:

или

, (1.2)

где функции принадлежности элементов x, y соответственно множествам A и B.

Пример 1. Пусть X и Y- области натуральных чисел от 1 до 4. Определим следующим образом нечеткие множества: A= “маленькие”, B= “большие”.

X=Y={1,2,3,4}, т.е. для примера взят частный случай соответствия- отношение на множестве {1,2,3,4}:

.

Для примера “если x маленькое, то y большое” (или , где знак означает операцию нечеткой метаимпликации) можно построить нечеткое отношение R следующим образом:

y1

y2

y3

y4

x1

0

0,1

0,6

1

R=

x2

0

0,1

0,6

0,6

x3

0

0,1

0,1

0,1

x4

0

0

0

0

В качестве элементов матрицы R записаны значения , вычисленные по формуле (1.2).

Для свертки нечетких отношений чаще выбирается свертка max-min (максиминная композиция). Пусть R нечеткое соответствие множества X и множества Y, а S нечеткое соответствие множества Y и множества V. Тогда нечеткое соответствие между X и V определяется как свертка (композиция) , где

или

. (1.3)

Пример 2. Пусть и заданы нечеткие множества A = “не маленькие”, H = “очень большие”, где

.

Тогда для правила “если y не маленькое, то v очень большое” (или ), в соответствии с формулой (1.2) нечеткое соответствие S определяется как

v1

v2

v3

v4

y1

0

0

0

0

S=

y2

0

0

0,4

0,4

y3

0

0

0,5

0,9

y4

0

0

0,5

1

Если теперь по формуле (1.3) вычислить свертку max-min с нечетким отношением R, полученным в примере 1.1, то из двух отношений:

если x маленькое, то y большое,

если y не маленькое, то v очень большое

можно построить нечеткое отношение из X в V.

y1

y2

y3

y4

v1

v2

v3

v4

x1

0

0,1

0,6

1

y1

0

0

0

0

=

x2

0

0,1

0,6

0,6

y2

0

0

0,4

0,4

=

x3

0

0,1

0,1

0,1

y3

0

0

0,5

0,9

x4

0

0

0

0

y4

0

0

0,5

1

v1

v2

v3

v4

x1

0

0

0,5

1

=

x2

0

0

0,5

0,6

x3

0

0

0,1

0,1

x4

0

0

0

0

Модель принятия решений на основе композиционного правила вывода описывает связь всех возможных состояний сложной системы с управляющими решениями. Формально модель задается в виде тройки (X,R,Y), где базовые множества, на которых заданы, соответственно, входы и выходы системы, R нечеткое соответствие “вход-выход”. Соответствие R строится на основе словесной качественной информации специалиста (эксперта), путем непосредственной формализации его нечетких стратегий. Эксперт описывает особенности принятия решений при функционировании сложной системы в виде ряда высказываний типа “если , то , иначе, если , то , иначе, ..., если , то ”. Здесь , ,..., нечеткие подмножества, определенные на базовом множестве X, а , ,..., нечеткие подмножества из базового множества Y. Все эти нечеткие подмножества задаются функциями принадлежности и .

Способ построения нечеткого отношения связывает высказывания эксперта по правилу “если , то ” и определяется функцией принадлежности , получаемой по формуле (1.2). Связка “иначе” между правилами понимается как или-связка, поскольку общее нечеткое отношение состоит из: правило 1, или правило 2 , или, ..., или правило N. Поэтому общее отношение R формально определяется следующим образом:

, где i=1,..., N. (1.4)

Если предположить, что мы имеем нечеткое событие , т.е. входную ситуацию, представленную нечетким подмножеством, и известно общее отношение R, тогда результирующее действие выводится по композиционному правилу вывода: . Значение функции принадлежности для вычисляется посредством максиминной операции, определяемой уравнением

. (1.5)

Рассмотренный логический вывод на основе нечеткой обобщенной метаимпликации хорошо зарекомендовал себя при использовании в экспертных системах, а также при принятии решений в реальном масштабе времени в задачах управления и контроля.

Список литературы

Заде Л.А. Основы нового подхода к анализу сложных систем и процессов принятия решений. /М.: Математика сегодня, 1974, с.5-49.

Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике. Пер. с франц. М.: Радио и связь, 1990, 288с.

Характеристики

Тип файла
Документ
Размер
685,21 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7030
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее