43556 (662666), страница 2
Текст из файла (страница 2)
ТП вычислительная машина. Чтобы избежать все все увеличивающегося наращивания
мощности ЭВМ сложные системы стали строить по иерархическому принципу. Как
правило, в сложный технологический комплекс входит несколько относительно
автономных агрегатов, например, в энергоблок тепловой электростанции входит
парогенератор (котел), турбина и электрогенератор. В иерархической системе для
каждой составной части создается своя локальная системауправления, как правило,
автоматическая на базе микропроцессорной техники. Теперь, чтобы все части
работали как единый энергоблок, необходимо скоординировать работу локальных
систем. Это осуществляется ЭВМ, устанавливаемой на пульте управления блоком. Для
этого уже потребуется небольшая вычислительная машина.
Перспективные АСУ ТП имеют ряд характерных признаков. Прежде всего это
автоматические системы, осуществляющие автоматическое управление рабочим
режимом, а также пуском и остановом оборудования (режимами, на которые при
ручном управлении приходится наибольшее число аварийных ситуаций из-за ошибок
операторов).
В системах предусматривается оптимизация управления ходом процесса по выбранным
критериям. Например, можно можно задать такие параметры процесса, при которых
стоимость себестоимость продукции будет минимальной, или, при необходимости,
настроить агрегат на максимум производительности, не считаясь с некоторым
увеличением расхода сырья и энергоресурсов на единицу продукции.
Системы дожны бытьадаптийными, т.е. иметь возможность изменять ход процесса при
изменении характеристик исходных материалов или состояния оборудования.
Одним из важнейших свойств АСУ ТП является обеспечение безаварийной работы
сложного технологического комплекса. Для этого в АСУ ТП предусматривается
возможность диагностирования технологического оборудования. На основе показаний
датчиков система определяет текущее состояние агрегатов и тенденции к аварийным
ситуациям и может дать команду на ведение облегченного режима работы или
остановку вообще. При этом оператору представляют данные о характере и
местоположении аварийных участков.
Таким образом, АСУ ТП обеспечмвают лучшее использование ресурсов производства,
повышение производительности труда, экономию сырья, материалов и
энергорессурсов, исключение тяжелых аварийных ситуаций, увеличение межремонтных
периодов работы оборудования. Вот несколько примеров.
АСУ ТП электролиза аллюминия позволяет экономить примерно 250 кВт-ч.
электроэнергии на каждую тонну выплавленного металла. Этой энергии достаточно,
для питания всех электроприборов в двухкомнатной квартире в течение месяца.
Автоматизация с применением ЭВМ установок первичной переработки нефти ЭЛОУ-АВТ6
обеспечивает увеличение выхода светлых нефтепродуктов (бензина, керосина,
дизельного топлива) на 30 тыс.т. в год за счет оптимизации ведения
технологического процесса.
Большой эффект в машиностроении дают гибкие производственные системы (ГПС),
состоящие из стыков с числовып программным управлением, автоматизированных
складских и транспортных систем, управляемых при помощи ЭВМ. Создание ГПЦ цеха
на Днепропетровском электровозостроительном заводе позволило в 3.3 раза повысить
производительность труда, высвободить 83 человека и сократить парк станков на 53
единицы. Кратко остановимся на основах организации и принципах построения гибких
производственных систем.
ОСНОВЫ ОРГАНИЗАЦИИ ГПС
Гибкая производственная система - совокупность в разных сочетаниях
технологического оборудования с числовым программным управлением (ЧПУ),
роботизированных технологических комплексов, гибких производственных модулей и
систем обеспечения их функционирования в автоматическом режиме в течение
заданного интервала времени. Она обладает свойством автоматизированной
переналадки при производстве изделий произвольной номенклатуры.
По организационной структуре ГПС имеют следующие уровни:
- гибкая автоматизированная линия (ГАЛ)
- гибкий автоматизированный участок или гибкий про изводственный комплекс (ГАУ
или ГПК)
- гибкий автоматизированный цех (ГАЦ).
Гибкая автоматизированная линия - гибкая производственная система, в которой
технологическое оборудование расположено в принятой последовательности
технологических операций.
Гибкий автоматизированный участок - гибкая производственная система,
функционирующая по технологическому маршруту, в котором предусмотрена
возможность изменения последовательности использования технологического
оборудования. Обе эти системы (ГАЛ и ГАУ) могут содержать отдельно
функционирующие единицы технологического оборудования.
Гибкий автоматизированный цех - гибкая автоматизированная система,
представляющая собой в различных сочетаниях совокупность гибких
автоматизированных линий, роботизированных технологических линий, гибких
автоматизированных участков, роботизированных технологических участков для
изготовления изделий заданной номенклатуры.
Предусмотрены также гибкие производственные комплексы (ГПК), представляющие
собой гибкую производственную систему, состоящую из нескольких гибких
производственных модулей, объединенных автоматизированной системой управления и
автоматизированной транспортно-складской системой, автономно функционирующую в
течение заданного интервала времени и имеющую возможность встраивания в систему
более высокой ступени автоматизации.
В соответствии с ГОСТ 26228-85 в ГПС имеются следующие составные части.
Гибкий производственный модуль (ГПМ) - единица технологического оборудования для
производства изделий произвольной номенклатуры в установленных пределах значений
их характеристик с программным управлением, автономно функционирующая,
автоматически осуществляющая все функции, связанные с их изготовлением, и
имеющая возможность встраивания в гибкую производственную систему.
В общем случае средства автоматизации ГПМ представляют собой накопители,
спутники, устройства загрузки и выгрузки, устройства удаления отходов,
устройства автоматизированного контроля, включая диагностирование, устройства
переналадки и т.д. Частным случаем ГПМ является роботизированный технологический
комплекс при условии возможности его встраивания в систему более высокого
уровня.
Средства обеспечения функционорования ГПС - совокупность взаимосвязанных
автоматизированных систем, обеспечивающих проектирование изделий,
технологическую подготовку их производства, управление гибкой производственной
системой и автоматическое перемещение предметов производства и технологической
оснастки.
В ГПС входят также автоматизированная система управления производством (АСУП),
автоматизированная транспортно складская система (АТСС), автоматизированная
сиситема инструментального обеспечения (АСИО), система автоматизированного
контроля (САК), автоматизированная система удаления отходов (АСУО) и т.д.
ПРИНЦИПЫ ПОСТРОЕНИЯ ГПС
В своем законченном идеальном виде ГПС являются высшей, наиболее развитой формой
автоматизации производственного процесса.
Можно сформулирровать основные принципы организации ГПС.
Принцип совмещения высокой производительности и универсальности прпредполагает
на данном уровне развития электронного машиностроения создание универсальности и
автоматизации в программно-управляемом и программно-перенастраиваемом
оборудовании. Гибкие производственные системы, сравнимые по производительности с
автоматическими линиями, а по гибкости - с универсальным оборудованием,
открывают огромные возможности для интенсификации производства. Например,
автоматизация трансформаторного производства в электронной промышленности
осложнена большим конструктивно-технологическим разнообразием его продукции.
Именно это потребовало создания систем с гибко перестраиваемой технологией.
Принцип модульности ГПС строится на базе гибких производственных модулей.
Типовые модули ГПС разработаны для основных видов производств изделий
электронной техники.
Принцип иерархичности ГПС предусматривает построение многоуровневой структуры.
На самом нижнем уровне находятся гибкие автоматизированные модули, на высших
уровнях - гибкие автоматизированные линии, участки, цехи, предприятия в целом.
Модульность и ерархичность позволяют разрабатывать ГПС для самого высокого
организационного структурного уровня.
Принцип преимущественной программной настройки. Оборудование ГПС, как основное,
так и вспомогательное, при смене изделий перенастраивается путем ввода новых
управляющих программ модулей. Перенастройка модулей вручную допустима в
минимальных объемах и только в случаях очевидной экономической неэффективности
реализации программной перенастройки.
Принцип обеспечения максимальной предметной замкнутости производства на возможно
более низком уровне структуры ГПС позволяет свести к минимуму затраты на
транспорт и манипулирование. Одновременно достигается снижение количества
операций при общем повышении гибкости ГПС.
Прицип совместимости технологических, программных, информационных,
конструктивных, энергетических и эксплуотационных элементов. Технологическая
совместимость обеспечивает технологическое единство и взаимозаменяемость
компонентов автоматизированного производства. Она предопределяет необходимость
выполнения определенных требований к изделию, технологии и технологическому
оборрудованию.
Изделие должно быть максимально технологично с точки зрения возможности
автоматизации его производства. например, для распознавания, ориентации и
позиционирования деталей при автоматической сборке необходимо предусматривать в
них специальные отличительные признаки : реперные знаки, характерные
отличительные внешние формы и др. Кроме того, изделия должны обладать высокой
степенью конструктивного и технологического подобия, необходимого для
организации группового производства.
Достигается это требование унификацией технологии производства изделий и их
полуфабрикатов, конструкции деталей, комплектующих и изделий в целом.
В свою очередь, все компоненты ГПС: приспособления, оснастка, автоматические
устройства загрузки-выгрузки, оборудование - должны в наивысшей степени
удовлетворять требованиям гибкой автоматизации.
Информационная совместимость подсистем ГПС обеспечивает их оптимальное
взаимодействие при выполнении заданных функций. Для ее достижения вводятся в
действие стандартные блоки связи с ЭВМ, выдерживается строгая регламентация
входных и выходных параметров модулей на всех иерархических уровнях системы,
входных и выходных сигналов для управляющих воздействий.
В условиях постоянного повышения стоимости программного обеспечения больших
систем, во все больших пропорциях превышающей стоимость технических средств,
особенноважное значение преобретает внутри- и межуровневая программная
совместимость оборудования.
Конструктивная совместимость обеспечивает единство и согласованность
геометрических параметров, эстетических и эргономических характеристик. Она
достигается созданием единой конструктивной базы для функционально подобных
модулей всех уровней при условии обязательной согласованности конструкций низших
иерархических уровней с констукциями высших уровней.
Эксплуотационная совместимость обеспечивает согласованность характеристик,
определяющих условия работы оборудования, его долговечность, ремонтопригодность,
надежность, и метрологических характеристик, а также соответствие требованиям
электронно-вакуумной гигиены, технологического микроклимата и т.д.
Энергетическая совместимость обеспечивает согласованность потребляемых
энергетических средств: воды, электроэнергии, сжатого воздуха, жидких газов,
вакуума и т.д. При комплектовании ГПС необходимо стремиться к минимальному
количеству разновидностей применяемых видов энергии.
Выбору объекта для создания ГПС предшествует анализ производственного процесса
на данном предприятии с целью определения соответствия его
организационно-технологической структуры принципам группового производства, т.е.
определения степени готовности предприятия к созданию ГПС.
Как уже отмечалось, основными компонентами ГПС являются: гибкий производственный
модуль (ГПМ), автоматические складская и транспортная системы (АСС и АТС) и
система автоматизированного управления.
Гибкий производственный модуль должен выполнять в автоматическом режиме
следующие функции:
- переналадку на изготовление другого изделия;
- установку изделий, подлежащих обработке в техно логическом оборудовании, и
выгрузку готовых изде лий;
- очистку установок от отходов производства;
- контроль правильности базирования и установки об рабатываемого изделия;
- контроль рабочих сред и средств, осуществляющих обработку, а также
формирование корректирующих воздействий по результатам контроля;