TEOR (660721), страница 3

Файл №660721 TEOR (Теоретическая механика (лекции)) 3 страницаTEOR (660721) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Введем 3-й вектор –вектор бинормали в, так что вектора , n и в составляли правую тройку векторов. Эти три вектора определяют оси естественного трехгранника. С каждой точкой кривой связаны 3 взаимно  оси , n, в

V=dr/dt=(dr/ds)/(ds/dt)=s

dr/ds=dr/ds=1

 направлен в сторону возрастания дуговой абсциссы

Определение ускорения при естественном способе задания дв-я точки

Ускорение W=dv/dt=d(s)/dt=s+s(ds/dt)

Кривизна кривой в данной точке

К=lim(/s)=d/ds

=1/k=ds/d-радиус кривизны в пределах при  s0, вектор d направлен по направлению нормали.

() =1. Произв.по времени: 2[ (d/dt)]=0   d/dt

Вектор d/dt направлен по нап-ю нормали

d/dt=d/dt= d/ dt= (d/ ds)( ds/ dt)= s(1/)

вектор d/dt= s/

s(d/dt)= s 2/= v2/

W= s+ (s 2/), где s= W -касат.составляющая ускорения

s 2/= Wn –норм.сост.ускорения

W=W + Wn

W=W2 + Wn2

W -хар-ет изменение скорости по вел-не,

Wn-хар-ет изменение скорости по направлению

W направлена по вектору  если s>0 и противоположно вектору  если s<0

Численное зн-е нормального ускорения Wn всегда >0, и оно всегда направлено внутрь области кривой в каждой ее точке.

Если точка движется по прямой, то норм.ускорение точки =0.

Пусть точка движется по окружности с пост.по величине скоростью, чему равно ускорение точки?

V=const

W =dv/dt=0

Wn =v2/R

Любую кривую можно представлять в виде совокупности дуг различного радиуса.

Связь между естеств.и коорд.способами задания дв-я.

Ds=x2+y2+z2 dt

S=x2+y2+z2 dt

W=dv/dt=d(x2+y2+z2)/dt=[VxWx+VyWy+VzWz]/V/

x=f1(t)

y= f2(t)

z= f3(t)

t=1(x) –цилиндр.пов-ть образ.параллель.оси у

y=f2(1(x)) - цилиндр.пов-ть образ.кот параллель.оси z.

z=f3(1(x))

Частный случай дв-я точки

1.Равномерное дв-е

v=const, S=So+vt

2.равноускоренное дв-е

W =const, V=Vo+ W t, S=Vot+ W (t2/2)

V2 –Vo2=2 WS

dV/dt= W,

dV= W dt, V –Vo= Wt

Кинематика твердого тела

В теор.механике рассм.только тверд.тела

Абс.тв.тела-это такие тела, раст.между двумя любыми точками не меняются за все время движения

Поступательное дв-е твердого тела

Поступательн.дв-ем тв.тела наз-ся такое дв-е

Тела, при кот.любая прямая, проведенная в нем остается параллельной самой себе за все время дв-я (самолет, летящий прямолинейно, дв-е поршня в двигателе автомоб., дв-е колеса обозрения)

Теорема: При поступ.движении тв.тела траектории дв-я всех точек тела конгруэнтны, а скорость и ускорение равны.

rв= rА+АВ

Поскольку это вып-ся в люб.момент времени, то получается, что траектория т.В можно определить смещением вектора АВ в каждой точке из траектории т.А возм.произв.по времени (АВ=const)

drв/dt= drA/dt+d(AB)/dt

VB=VA. WB=WA.

Вращат.дв-е твердого тела.

Вращат.наз-ся такое дв-е тв.тела, при кот-м хотя бы 2 точки тела остаются неподвижными за все время вращенияя, через эти 2 точки проходит ось вращения, все остальные точки движутся по окружностям в плоскостях перпендик-х оси вращения.

Фермы

Начинаем искать усилия стержней, рассматривая узлы.

Метод Риттера(проверка)

При нахождении усилий стержней плоской фермы методом выфрезания узлов полезно знать:

1)если в незагруженном узле плоск.фермы сходятся 2 стержня. То усилие в этих стержнях =0

2)если в незагруженном узле плоск.фермы сходятся 3 стержня, из кот-х 2 расоложены на одной прямой, то усилие в 3-м стержне =0, а усилие в первых 2-х равны между собой.

Вращат.дв-е-это такое дв-е, при кот-м ось остается неподвижной, а все др..тела движутся в плоскости перпендикулярной оси вращения.

Введем угол поворота  -как угол между неподв.пл-тью и плоскостью, связанной с телом

[]=рад

=2n

[N]- число оборотов

Угловая скорость =d/dt, []=рад/c=c-1

=f(t)

Вектор угл.скорости  лежит на оси вращения и направлен в сторону, что с конца этого вектора вращение кажется видимым против часовой стрелки.

Угловое ускорение  опр-ся по ф-ле:

=dW/dt=d2/dt2, []= рад/c2=c-2.

Вектор углового ускорения  также лежит на оси вращения и направлен по вектору , если вращение ускорено и противоположен ему, если вращение замедлено.

[n]-число оборотов в мин.=об/мин, тогда =n/30/

Частный случай вращат.дв-я:

1)равномерное вращение.. =t

2)равнопеременное вращение: =const. =о t+t2/2;

=о+t

d/dt=

d= dt

 d= dt

-о= dt

2 -о2 =2

d/dt=о+t

 d=оdt+tdt

-o=оdt+tdt

-o= оt+(t2/2)

Определение линейной скорости и лин.ускорения при вращат.движении твердого тела

S=h

ds/dt=h(d/dt)

V=h, dv/dt=h(d/dt)

W=h

Wn=v2/h=(2h2)/h=2h

Полное ускорение W= Wn2+ W2=h2+2

tg=W/ Wn=/2

Вывод: при вращ.дв-ии тв.тела линейная скорость касательная нормальной и полное ускорение пропорциональны растоянию точки от оси вращения.

Векторные ф-лы для опр-я скорости и ускорения при вращат.движении.

v=[r]-ф-ла Эйлера

v=rsin(,r)

v=h

W=[r], W=rsin[r]=h,

Wn=[[ r]]=[ v]

Wn=v sin(v)= v=2h

Производ.от вектора пост.по модулю под скалярным аргументом

в=const=в

dв/dt, (вв)=в2, 2[в(dв/dt)]=0  dв/dt в.

dв/dt=dв/dt=в(d/dt)= в.

dв/dt=[ в]

Производная от времени, причем в=const, равна векторному произведению угловой скорости вращения этого вектора на сам этот вектор.

dτ/dt= (dτ ds)/(ds dt)= (dτ/dφ)( dφ/dt)

dτ/dφ=1

dτ/dt= n

dτ/dt=[τ]

Теорема о проекциях скоростей

При любом движении твердого тела проекция скоростей 2-х точек этого тела на прямую их соединяющих равны.

VAcosα= VBcosβ

Поскольку точки выбираем произвольно, то проекции скоростей любой точки прямой на эту прямую равны.

rв=rA+AB

rв-rA=AB

(rв-rA)2=(AB)2=R2=const (l=│AB│)

2(rв-rA)[(d rв/dt)- (d rA/dt)]=0

(VB-VA)AB=0, AB= VA AB

VBcosβ AB= VAcosα AB

VBcosβ = VAcosα –смысл этой теоремы заключ.в том, что рассм.дв-е абсол.тв.тела, мы не можем допустить, чтобы т.А доганяла т.В или чтобы т.А отставала от т.В.

Мгновенный центр ускорений

Α=arctg(ε/ω2)

WQ=0

WAτ= εAQ, WAn= ω2 AQ,

WA=√( WAτ)2+( WAn)2= AQ√ε2+ ω2

tgα= WAτ/ WAn= ε/ ω2

Частный случай:

1)ε=0, тогда α=0

2)ω=0, тогда α=π/2 (дв-е мгновенно поступательное)

Сложное дв-е точки.

Сложным наз-ся токое дв-е точки, при котором сущ-ет относительное дв-е точки(это дв-е отн-но подвижной сист.координат) и переносное движение (это дв-е точки в момент в подвижной сист.коор-т отн-но неподвижной). Причем в принципе подв.сист.коор-т м.б.одно, а переносных много.

Определение скорости точки в сложном движении.

ρмо+r

Ф-ла Бура Производная от вектора относит.неподвижной сист.координат

r=xi+yj+zk

dr/dt=(dx/dt)/i+(dy/dt)j+(dz/dt)k+ x(di/dt)+y(dj/dt)+z(dk/dt)

di/dt=[ωi], dj/dt=[ωj], dk/dt=[ωk],

dr/dt=´dr/dt+[ωr], где ´dr/dt=(dx/dt)/i+(dy/dt)j+(dz/dt)k

причем dr/dt это частная локальная производная или производная от вектора r отн-но подвиж.системы координат.

Ф-ла Бура: производная от вектора отн-но неподв.системы коор-т, которая изменяется отн-но подвижной системы коор-т складывается из частной (локальной) производной плюс векторное произведение угловой скорости вращения подвижной сист.коор-т на этот вектор.

Частный случай ф-лы Бура: 1)Если ε=0 (подв.сист.коор-т движ-ся поступательно), то полная производная = частной, т.е. dr/dt=´dr/dt,

2)Если вектор r не изменяется относительно подвижной сист.коорд., т.е. ´dr/dt=0, то тогда dr/dt=[ωr] (производ.от вектора пост.по Н)

3)Пусть полная произв.от r по времени =0, т.е. dr/dt=0, тогда ‘dr/dt+ [ωr]=0,

´dr/dt+ [ωr]=0, ´dr/dt= - [ωr]

Пусть r=ω, тогда получим dω/dt=´dω/dt= ε

Производная от вектора ω по времени не зависит от того, относительно какой сист.ккор-т мы берем.

м/dt= dρo/dt+dr/dt/

VM=VO+[ ωr]+ ´dr/dt

VM=VL+ Vr

VL- переносная скорость (скор.точки в морож.в неподв.сист.коор-т отн-но подвижной)

Vr- относительная скорость(скор.точкт отн-но неподв.сист.коор-т)

Абсолютная скорость точки при сложном движении складывается из векторной суммы переносной и относительной скоростей

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr

d Vr/dt=[ ω Vr]+ Wr

Wk=2[ω Vr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.

Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.

Методы нахождения мгновенных центров скоростей

Суть (классич.метод закл-ся в след.): Мгновенный центр скоростей нах-ся на пересечении перпендикуляров к скоростям в 2-х точках тела.

ω = VА/АР= VВ/ВР= VС/СР

Если скорости 2-х точек | |-ны не равны др.другу, а прямая их соединяющая -на, то тогда:

ω = VА/АР= VВ/ВР= VС/СР

Пусть скорости | |-ны, направлены в разные стороны, а прямая их соединяющая им -на.

ω = VА/АР= VВ/ВР

Пусть скорости 2-х точек тела| |-ны , направлены в одну сторону, а прямая их соединяющая не -на, то имеем: (в этом случае мгновенный центр скоростей нах-ся в бесконечности, ω =0, тело совершает мгновенно поступательное движение) VА = VВ= VС=…

Примером явл-ся кривошипно-шатунный механизм. ωАВ =0

Способ нахождения опред-я мгн.скоростей из механич.соображений

Ωколеса= VД/ДР= VВ/ВР= VА/АР

Поскольку мгн.центр скоростей –это понятие геометрическое, то может оказаться, что он нах-ся вне пределов тела.

Определение ускорения при плоскопараллельном движени.

VВ=VА+[ ω АВ]

dVВ /dt= dVА /dt+[ ε АВ]+ [ω (d АВ/dt) ]

WВ= WА +WВА+ WВАn

WВАn=[ω[ωAB]]= [ωV]

WВА=ε AB; WВА= ω2AB

При плоско параллельн.движении ускорение любой точки складывается из ускорения полюса плюс касательная к нормальной составляющей при вращении точки относительно полюса.

Сферическое дв-е тв.тела.

Сферическим наз-ся такое дв-е, при коротом это тело имеет только одну неподвижную точку. Все остальные точки тела располагаются на сферах разного радиуса. Н-р!гороскоп.

Сферич.тело имеет 3 степени свободы, n=3N-k, где n-число степеней свободы, N-число точек, к-число связей. n =6-для свободного тв.тела

Для тела, кот-е совершает сферич.дв-е достаточно 3 коор-ты, поскольку оно имеет 3 степени свободы.

х1, y1, z1-неподв.сист.коор-т

х, y, z-подв.сист.коор-т

ок-линия узлов-это прямая, по которой пересекаются плоскости х1оу1 и хоу

-угол прецессии(между х1 и ок)

-угол нутации(между z1 и z)

-угол собственного вращения(<(ok; ox))

, ,-углы Эллера.

=(t)

=(t)

=(t)-будем иметь положение тела в пространстве(ккор-ты)

Характеристики

Тип файла
Документ
Размер
127,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6382
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее