10008 (646264), страница 4
Текст из файла (страница 4)
Состав газов в плавательном пузыре определяется как содержанием их в водоеме, так и состоянием рыбы.
Подвижные и хищные рыбы имеют большой запас кислорода в плавательном пузыре, который расходуется организмом при бросках за добычей, когда поступление кислорода через органы дыхания оказывается недостаточным. В неблагоприятных кислородных условиях воздух плавательного пузыря у многих рыб используется для дыхания. Вьюн и угорь могут в течение нескольких дней жить вне воды при условии сохранения влажности кожи и жабр: если в воде жабры обеспечивают угрю 85... 90% общего поглощения кислорода, то в воздухе—только треть. Вне воды угорь использует для дыхания кислород плавательного пузыря и воздух, проходящий через кожу и жабры. Это позволяет ему даже переползать из одного водоема в другой. Карп и сазан, которые не имеют каких-либо специальных приспособлений для использования атмосферного воздуха, при нахождении вне воды частично поглощают кислород из плавательного пузыря.
Осваивая различные водоемы, рыбы приспособились к жизни при разных газовых режимах. Наиболее требовательны к содержанию кислорода в воде лососевые, которым для нормальной жизнедеятельности нужна концентрация кислорода 4,4... 7 мг/л; хариус, голавль, налим хорошо себя чувствуют при содержании не менее 3,1 мг/л; карповым обычно достаточно 1,9... 2,5 мг/л.
Каждому виду свойствен свой кислородный порог, т. е. минимальная концентрация кислорода, при которой рыба гибнет. Форель начинает задыхаться при концентрации кислорода 1,9 мг/л, судак и лещ погибают при 1,2, плотва и красноперка — при 0,25 ... 0,3 мг/л; у сеголетков-карпов, выращенных на естественной пище, кислородный порог отмечен при 0,07 ... 0,25 мг/л, а для двухлетков—0,01 ...0,03 мг/л кислорода. Караси и ротаны — частичные анаэробы — несколько суток могут жить совсем без кислорода, но при низкой температуре. Предполагают, что сначала организм использует кислород из плавательного пузыря, затем — гликоген печени и мышц. По-видимому, рыбы имеют специальные рецепторы в передней части спинной аорты или в продолговатом мозгу, воспринимающие падение концентрации кислорода в кровяной плазме. Выносливости рыб способствует большое количество каротиноидов в нервных клетках мозга, которые способны накапливать кислород и отдавать его при недостатке.
Интенсивность дыхания зависит от биотических и абиотических факторов. Внутри одного вида она изменяется в зависимости от размера, возраста, подвижности, активности питания, пола, степени зрелости гонад, физико-химических факторов среды. По мере роста рыб активность окислительных процессов в тканях уменьшается; созревание гонад, наоборот, вызывает увеличение потребления кислорода. Расход кислорода в организме самцов выше, чем у самок.
На ритм дыхания кроме концентрации в воде кислорода влияют содержание СО2, рН, температура и др. Например, при температуре 10 °С и содержании кислорода 4,7 мг/л форель совершает 60... 70 дыхательных движений в минуту, а при 1,2 кг/л частота дыхания возрастает до 140... 160; карп при 10 °С дышит почти вдвое медленнее, чем форель (30... 40 раз в минуту), зимой он совершает в минуту 3... 4 и даже 1 ... 2 дыхательных движения.
Как и резкий недостаток кислорода, на рыб губительно действует чрезмерное перенасыщение им воды. Так, летальной границей для эмбрионов щуки является 400% насыщения воды кислородом, при 350 .. .430% насыщения нарушается двигательная активность эмбрионов плотвы. Прирост осетровых снижается при 430% насыщения.
Инкубация икры в перенасыщенной кислородом воде приводит к замедлению развития эмбрионов, сильному увеличению отхода и количества уродов и даже гибели. У рыб появляются пузырьки газа на жабрах, под кожей, в кровеносных сосудах, органах, а затем наступают судороги и смерть. Это называется газовая эмболия или газопузырьковая болезнь. Однако гибель наступает не из-за избытка кислорода, а из-за большого количества азота. Например, у лососевых личинки и мальки гибнут при 103 ... 104%, сеголетки — 105 ... 113, взрослые рыбы — при 118% насыщения воды азотом.
Для поддержания оптимальной концентрации кислорода в воде, обеспечивающей наиболее эффективное течение физиологических процессов в организме рыб, нужно использовать аэрационные установки.
К небольшому пересыщению кислорода рыбы адаптируются быстро. У них повышается обмен и как результат увеличивается потребление корма и снижается кормовой коэффициент, развитие эмбрионов ускоряется, отходы снижаются.
Для нормального дыхания рыб очень важно содержание в воде СО2. При большом количестве двуокиси углерода дыхание рыб затруднено, так как уменьшается способность гемоглобина крови связывать кислород, насыщение кислородом крови резко снижается и рыба задыхается. При содержании CO2 в атмосфере 1...5% СО2; крови не может поступать наружу, а кровь не может принимать кислород даже из насыщенной кислородом воды.
Кровеносная система
Главным отличием кровеносной системы рыб от других позвоночных является наличие одного круга кровообращения и двухкамерного сердца, наполненного венозной кровью (за исключением двоякодышащих и кистеперых).
Сердце состоит из одного желудочка и одного предсердия и помещается в околосердечной сумке, сразу за головой, позади последних жаберных дуг, т. е. по сравнению с другими позвоночными сдвинуто вперед. Перед предсердием имеется венозная пазуха, или венозный синус, со спадающими стенками; через эту пазуху кровь поступает в предсердие, а из него — в желудочек.
Расширенный начальный участок брюшной аорты у низших рыб (акулы, скаты, осетровые” двоякодышащи╦) образует сокращающийся артериальный конус, а у высших рыб — луковицу аорты, стенки которой сокращаться не могут. Обратному току крови препятствуют клапаны.
Схема кровообращения в самом общем виде представлена следующим образом. Венозная кровь, заполняющая сердце, при сокращениях сильного мускульного желудочка через артериальную луковицу по брюшной аорте направляется вперед и поднимается в жабры по приносящим жаберным артериям. У костистых рыб их четыре с каждой стороны головы—по числу жаберных дуг. В жаберных лепестках кровь проходит через капилляры и окисленная, обогащенная кислородом направляется по выносящим сосудам (их также четыре пары) в корни спинной аорты, которые затем сливаются в спинную аорту, идущую вдоль тела назад, под позвоночником. Соединение корней аорты спереди образует характерный для костистых рыб - головной круг. Вперед от корней аорты ответвляются сонные артерии.
От спинной аорты идут артерии к внутренним органам и мускулатуре. В хвостовом отделе аорта переходит в хвостовую артерию. Во всех органах и тканях артерии распадаются на капилляры. Собирающие венозную кровь венозные капилляры впадают в вену, несущую кровь к сердцу. Хвостовая вена, начинающаяся в хвостовом отделе, войдя в полость тела, разделяется на воротные вены почек. В почках разветвления воротных вен образуют воротную систему, а выйдя из них, сливаются в парные задние кардинальные вены. В результате слияния вен задних кардинальных с передними кардинальными (яремными), собирающими кровь из головы, и подключичными, приносящими кровь из грудных плавников, образуются два Кювьерова протока, по которым кровь попадает в венозный синус. Кровь из пищеварительного тракта (желудка, кишечника) и селезенки, идущая по нескольким венам, собирается в воротную вену печени, разветвления которой в печени образуют воротную систему. Собирающая кровь из печени печеночная вена впадает прямо в венозный синус
Рис. 1 Схема кровеносной системы костистой рыбы:
1 - венозная пазуха; 2 - предсердие; 3 - желудочек; 4 - луковица аорты; 5 - брюшная аорта; 6 - приносящие жаберные артерии; выносящие жаберные артерии; 8 - корни спинной аорты; 9 - передняя перемычка, соединяющая корни аорты; 10 - сонная артерия; 11 - спинная аорта; 12 - подключичная артерия; 13 - кишечная артерия; 14 - брыжеечная артерия; 15 - хвостовая артерия; 16 - хвостовая вена; 17 - воротные вены почек; 18 - задняя кардинальная вена; 19 - передняя кардинальная вена; 20 - подключичная вена; 21 - Кювьеров проток; 22 - воротная вена печени; 23 - печень; 24 - печеночная вена; черным показаны сосуды с венозной кровью, белым с артериальной.
Как и у других позвоночных, у круглоротых и рыб имеются так называемые дополнительные сердца, поддерживающие давление в сосудах. Так, в спинной аорте радужной форели есть эластичная связка, выполняющая роль нагнетающего насоса, который автоматически увеличивает циркуляцию крови во время плавания, особенно в мускулатуре тела. Интенсивность работы дополнительного сердца зависит от частоты движений хвостового плавника.
У двоякодышащих рыб появляется неполная перегородка предсердия. Это сопровождается и возникновением легочного круга кровообращения, проходящего через плавательный пузырь, превращенный в легкое.
Сердце рыб гораздо меньше и слабее, чем сердце наземных позвоночных. Масса его обычно не превышает 2,5%, в среднем 1% массы тела, тогда как у млекопитающих оно достигает 4,6%, а у птиц даже 16%.
Кровяное давление (Па) у рыб низкое—2133,1 (скат), 11198,8 (щука), 15998,4 (лосось), тогда как в сонной артерии лошади — 20664,6.
Невелика и частота сокращений сердца—18...30 ударов в минуту, причем она сильно зависит от температуры: при низкой температуре у рыб, зимующих на ямах, она уменьшается до 1...2; у рыб, переносящих вмерзание в лед, пульсация сердца на этот период прекращается.
Количество крови у рыб меньше, чем у всех остальных позвоночных животных (1,1,..7,3% массы тела, в том числе у карпа 2,0...4,7%, сома—до 5, щуки—2, кеты--1,6, тогда как у млекопитающих—6,8% в среднем). Это связано с горизонтальным положением тела (нет необходимости проталкивать кровь вверх) и меньшими энергетическими тратами в связи с жизнью в водной среде. Вода является гипогравитационной средой, т. е. сила земного притяжения здесь почти не сказывается.
Морфологическая и биохимическая характеристика крови различна у разных видов в связи с систематическим положением, особенностями среды обитания и образа жизни. Внутри одного вида эти показатели колеблются в зависимости от сезона года, условий содержания, возраста, пола, состояния особей. Эритроциты рыб крупнее, а их количество в крови меньше, чем у высших позвоночных, лейкоцитов же, как правило, больше. Это связано, с одной стороны, с пониженным обменом рыб, а с другой—с необходимостью усилить защитные функции крови, так как окружающая среда изобилует болезнетворными организмами. В 1 мм3 крови количество эритроцитов составляет (млн): у приматов—9,27; копытных—11,36; китообразных— 5,43; птиц—1,61...3,02; костистых рыб—1,71 (пресноводные), 2,26 (морские), 1,49 (проходные).
Количество эритроцитов у рыб колеблется в широких пределах, прежде всего в зависимости от их подвижности: у карпа— 0,84...1,89 млн/мм3 крови, щуки—2,08, пеламиды—4,12млн/мм3. Количество лейкоцитов составляет у карпа 20...80, у ерша — 178 тыс/мм3. Лейкоциты рыб отличаются большим разнообразием. У большинства видов в крови имеются и зернистые (нейтрофилы, эозинофилы), и незернистые (лимфоциты, моноциты) формы лейкоцитов. Преобладают лимфоциты, на долю которых приходится 80...95%, моноциты составляют 0,5...11%, нейтрофилы—13...31%. Эозинофилы встречаются редко. Например, они есть у карповых, амурских растительноядных и некоторых окуневых рыб.
Соотношение разных форм лейкоцитов в крови карпа зависит от возраста и условий выращивания.
Количество лейкоцитов сильно изменяется в течение года:
у карпа оно повышается летом и понижается зимой при голодании в связи со снижением интенсивности обмена.
Разнообразие форм, размеров и количества характерно и для тромбоцитов, участвующих в свертывании крови.
Кровь рыб окрашена гемоглобином в красный цвет, но есть рыбы и с бесцветной кровью. У таких рыб кислород в растворенном состоянии переносится плазмой. Так, у представителей семейства Chaenichthyidae (из подотряда нототениевых), обитающих в антарктических морях в условиях низкой температуры (<2°С), в воде, богатой кислородом, эритроцитов и гемоглобина в крови нет. Дышат они через кожу, в которой очень много капилляров: протяженность капилляров на 1 мм2 поверхности тела достигает 45 мм. Кроме того, у них ускорена циркуляция крови в жабрах. У нототениевых, тресковых и других обитателей полярных широт в крови образуются вещества (антифризы), благодаря которым они не замерзают при отрицательной температуре.
Количество гемоглобина в организме рыб значительно меньше, чем у наземных позвоночных: на 1 кг тела у них приходится 0,5...4 г, тогда как у млекопитающих он составляет 5...25 г. У рыб, передвигающихся быстро, гемоглобина больше, чем у малоподвижных: у проходного осетра 4 г/кг, у налима 0,5 г/кг. Количество гемоглобина зависит от сезона (у карпа повышается зимой и понижается летом), гидрохимического режима водоема (в воде с рН 5,2 количество гемоглобина в крови возрастает), условий питания (карпы, выращенные на естественной пище и дополнительных кормах, имеют разное количество гемоглобина). Темп роста рыб зависит от количества гемоглобина.
Жизнь в среде с небольшим содержанием кислорода определила низкую интенсивность обмена и более высокую способность насыщения при более низком парциальном давлении кислорода в отличие от позвоночных, дышащих воздухом. Способность гемоглобина извлекать кислород из воды у разных рыб неодинакова. У быстро плавающих (макрели, трески, форели) гемоглобина в крови много, и они очень требовательны к содержанию кислорода в воде. У многих морских придонных рыб, а также угря, карпа, карасей и некоторых других, наоборот, гемоглобина в крови мало, но он может забирать кислород из среды даже с незначительным количеством.
Например, судаку для насыщения крови кислородом (при 16 °С) необходимо содержание в воде 2,1...2,3 О2 мг/л; при наличии в воде 0,56...0,6 O2 мг/л кровь начинает его отдавать, дыхание оказывается невозможным, и рыба гибнет. Лещу при этой же температуре для полного насыщения гемоглобина кислородом достаточно присутствие в литре, воды 1,0...1,06 мг кислорода.
Чувствительность рыб к изменениям температуры воды также связана со свойствами гемоглобина: при повышении температуры потребность организма в кислороде увеличивается, но способность гемоглобина его забирать—уменьшается.
Уменьшает способность гемоглобина забирать кислород и углекислота: для того чтобы насыщенность крови угря кислородом достигла 50% при содержании в воде 1% СО2, необходимо давление кислорода в 666,6 Па, а в отсутствие CO2 для этого достаточно давления кислорода почти вдвое меньшего — 266,6.„399,9 Па,
2>