1 (646036), страница 3
Текст из файла (страница 3)
Серебро. Источниками поступления серебра в поверхностные воды служат подземные воды и сточные воды рудников, обогатительных фабрик, фото предприятий. Повышенное содержание серебра бывает связано с применением бактерицидных и альгицидных препаратов. В сточных водах серебро может присутствовать в растворенном и взвешенном виде, большей частью в форме галоидных солей. В незагрязненных поверхностных водах серебро находится в субмикрограммовых концентрациях. В подземных водах концентрация серебра колеблется от единиц до десятков микрограммов в 1 дм3, в морской воде - в среднем 0.3 мкг/дм3. Ионы серебра способны уничтожать бактерии и уже в незначительной концентрации стерилизуют воду (нижний предел бактерицидного действия ионов серебра 2.10-11 моль/дм3). Роль серебра в организме животных и человека изучена недостаточно [8], [31].
Сурьма. Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий. В природных водах соединения сурьмы находятся в растворенном и взвешенном состоянии. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы. В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0.5 мкг/дм3, в подземных водах - 10 мкг/дм3 [31].ПДК сурьмы составляет 0.05 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический) мг/дм3 [33].
Хром. В поверхностные воды соединения трех- и шестивалентного хрома попадают в результате выщелачивания из пород (хромит, крокоит, уваровит и др.). Некоторые количества поступают в процессе разложения организмов и растений, из почв. Значительные количества могут поступать в водоемы со сточными водами гальванических цехов, красильных цехов текстильных предприятий, кожевенных заводов и предприятий химической промышленности. Понижение концентрации ионов хрома может наблюдаться в результате потребления их водными организмами и процессов адсорбции. В поверхностных водах соединения хрома находятся в растворенном и взвешенном состояниях, соотношение между которыми зависит от состава вод, температуры, рН раствора. Взвешенные соединения хрома представляют собой в основном сорбированные соединения хрома. Сорбентами могут быть глины, гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки растительных и животных организмов. В растворенной форме хром может находиться в виде хроматов и бихроматов. При аэробных условиях Cr(VI) переходит в Cr(III), соли которого в нейтральной и щелочной средах гидролизуются с выделением гидроксида. В речных незагрязненных и слабозагрязненных водах содержание хрома колеблется от нескольких десятых долей микрограмма в литре до нескольких микрограммов в литре, в загрязненных водоемах оно достигает нескольких десятков и сотен микрограммов в литре. Средняя концентрация в морских водах - 0.05 мкг/дм3, в подземных водах - обычно в пределах 10 - 102 мкг/дм3. Соединения Cr(VI) и Cr(III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr(VI) являются более опасными [9], [31]. Содержание их в водоемах санитарно-бытового использования не должно превышать ПДК для Cr(VI) 0.05 мг/дм3, для Cr(III) 0.5 мг/дм3 [33].
Цинк. Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, госларит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др. В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др. В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм3, в морских - от 1.5 до 10 мкг/дм3. Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным. Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид [8], [31], [40]. ПДК Zn2+ составляет 1 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДК Zn2+ - 0.01 мг/дм3 (лимитирующий признак вредности — токсикологический) [33].
В таблице 1.1. представлены наиболее важные свойства некоторых тяжелых металлов [28].
Таблица 1.1
Биогеохимические свойства тяжелых металлов
Свойство | Cd | Co | Cu | Hg | Ni | Pb | Zn |
Биохимическая активность | В | В | В | В | В | В | В |
Токсичность | В | У | У | В | У | В | У |
Канцерогенность | - | B | - | - | B | - | - |
Продолжение таблицы 1.1
Обогащение аэрозолей | B | H | B | B | H | B | B |
Минеральная форма распространения | B | B | H | B | H | B | H |
Органическая форма распространения | B | B | B | B | B | B | B |
Подвижность | B | H | У | В | Н | В | У |
Тенденция к биоконцентрированию | В | В | У | В | В | В | У |
Эффективность накопления | В | У | В | В | У | В | В |
Комплексообразующая способность | У | Н | В | У | Н | Н | В |
Склонность к гидролизу | У | Н | В | У | У | У | В |
Растворимость соединений | В | Н | В | В | Н | В | В |
В- высокая, У - умеренная, Н – низкая
1.2. Сорбенты, теоретические основы сорбционных процессов
Сорбенты — твердые и жидкие вещества, применяемые для поглощения растворимых соединений, газов или паров. Термин "сорбент" включает в себя адсорбенты, абсорбенты, ионообменные материалы и комплексообразователи. Сорбент обладает способностью взаимодействовать и связываться с сорбатом. В многокомпонентных системах это взаимодействие позволяет выделить сорбент из общей смеси. Каждый из сорбентов имеет свои особенности и отличительные свойства. Адсорбент удерживает адсорбированное вещество на границе раздела. Вещества могут адсорбироваться на границах раздела газ — жидкость или жидкость — жидкость, но наиболее важные в практическом отношении системы используют адсорбцию на границе раздела газа или жидкости с твердой фазой. Твердый адсорбент обычно применяется в виде гранул, имеющих пористое внутреннее строение. Внутренняя поверхность очень развита и, как правило, ее структура определяется пересекающимися порами малого диаметра [12].
Сорбенты делятся на пять типов: тонкодисперсные порошки, пористые угли, ионообменные гели, пористые смолы, молекулярные сита. Не следует рассматривать эти типы как абсолютно различные или, напротив, как частные случаи других типов. Проходят медико-биологическую оценку жидкие мембраны, которые нельзя отнести ни к одному из перечисленных типов сорбентов.
Адсорбционные свойства адсорбентов зависят от химического состава и физического состояния поверхности, характера пористости и удельной поверхности (поверхности, приходящейся на 1 г вещества). Непористые адсорбенты (молотые кристаллы, мелкокристаллические осадки, частицы дымов, сажи) имеют удельные поверхности от 1 м2/г до 500 м2/г. Удельные поверхности пористых адсорбентов (силикагелей, алюмогелей, алюмосиликатных катализаторов, активированных углей) достигают 1000 м2/г [81].
Непористые высокодисперсные адсорбенты получают, главным образом, при термическом разложении или неполном сгорании углеводородов (получение саж), сжигании элементоорганических и галогенных соединений (получение высокодисперсного кремнезема-аэросила). Пористые адсорбенты получают следующими способами:
— создавая сети пор в грубодисперсных твердых телах химическим взаимодействием;
— приготавливая гели из коллоидных растворов — золей;
— синтезируя пористые кристаллы типа цеолитов, имеющие особенно большое значение как катализаторы, адсорбенты и молекулярные сита.
Адсорбенты получают также термическим разложением карбонатов, оксалатов, гидроокисей, некоторых полимеров, молекулярной возгонкой твердых тел в вакууме и др. способами [11]. Для препаратов, используемых в качестве сорбентов, характерна твердая структура и значительная (как правило) физическая, ионитная сорбция. Один из старейших сорбентов, действие которого основано на физической сорбции, — активированный уголь, а ионной сорбции — пектиновые вещества и растительные продукты, содержащие их в большом количестве [82].
В последнее время для сорбции разработаны способы производства новых видов активированных углей, имеющих высокую механическую прочность. К ним относятся угли марок СКТ-6А ВЧ, ИГИ, СКН, изготовленные из различных углеродсодержащих материалов (каменный уголь, торф, спекающиеся угли) и характеризующиеся наличием суммарного объема пор в пределах 0,7—1,5 см3/г [27].
Активированные угли, в принципе, способны извлекать значительное количество веществ с молекулярной массой от нескольких десятков до нескольких тысяч дальтон — азотистые шлаки (креатинин, мочевая кислота, индол, гуанидиновые основания, полиамины и др.), нейромедиаторы (адреналин, норадреналин, серотонин, ацетилхолин), аминокислоты, пептиды средней молекулярной массы, триглицериды, насыщенные и ненасыщенные жирные кислоты, сахара, кетокислоты, компоненты желчи, стероидные гормоны и др. Кроме того, сорбции подвергаются тяжелые металлы, алкалоиды, гипнотики, антидепрессанты, анальгетики, антипиретики, хлорированные углеводороды, фосфорорганические инсектициды, гербициды, дефолианты и др. Поскольку избирательная способность активированных углей мала, то можно предполагать, что в растворах смеси веществ в большей степени на них будет сорбироваться тот компонент, концентрация которого будет более высокой [19, 20].
Среди препаратов для сорбции применяют угольные, кремниевые и полимерные сорбенты. Для энтеросорбции чаще всего используются угольные сорбенты марок СКН, что означает карбонат насыщенный.