biologi (645939), страница 8
Текст из файла (страница 8)
Газовую –поглощает и выделяет газы; окислительно –восстановительную – окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную – организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний.
Газовая и окислительно- восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. по мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы – количество углекислого газа сокращалось, а кислорода – увеличивалось. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Кислород используется живыми организмами для процесса дыхания, в результате чего в атмосферу поступает углекислый газ.
Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы.
3. Основные ароморфозы в эволюции беспозвоночных животных
Кишечнополостные:
- дифференцировка клеток и образование тканей;
- нервная система диффузного типа;
- полостное пищеварение
Плоские черви:
- двухсторонняя симметрия тела;
- системы органов пищеварения, выделительная и половая
Круглые черви:
- первичная полость тела
- наличие заднего отдела кишечника и анального отверстия
Кольчатые черви:
- органы движения;
- органы дыхания;
- замкнутая кровеносная система
- вторичная полость тела
- сегментация тела
Моллюски:
- разделение тела на отделы
- появление сердца, почки, печени
Членистоногие:
-наружный скелет
- членистые конечности
- поперечно-полосатая мускулатура
Насекомые
Появились крылья
Билет №22
1. Митоз.
Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма.
Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.
Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе.
Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК.
Интерфаза в клетках растений и животных в среднем продолжается 10—20 ч. Затем наступает процесс деления клетки — митоз.
Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке.
Фазы митоза. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. На рисунке 26 схематически показан ход митоза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играющие роль в расхождении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует расхождение хромосом.) Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс расхождения хромосом более наглядным. Центриоли удваиваются и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки.
В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и
в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе.
В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку — центромеру. Хромосомы своими центромерами прикрепляются к нитям веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.
Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.
Следующая стадия деления клетки — телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.
Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.
Весь процесс митоза занимает в среднем 1—2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит он также и от условий внешней среды (температуры, светового режима и других показателей).
Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все дочерние клетки получают одну и ту же генетическую информацию.
2. Важнейшие достижения биологической науки в XX веке.
Вопрос о возможных путях достижения биологического прогресса был разработан Северцовым создал теорию морфологического и биологического прогресса и регресса.
Вавиловым был сформулирован закон гомологических рядов наследственной изменчивости. Развивается селекция (Мичурин), генная инженерия, клонированы животные.
3. Составит схему пищевой цепи пресноводного водоема.
Растительными остатками и развивающимися на них бактериями питаются простейшие, которые поедают рачки. Рачков поедают рыбы. Рыбами питаются хищные рыбы. Рыбой птицы.
Растительные остатки и бактерии простейшие-> рачки-> рыба->
Хищные рыбы -> птицы
Билет №23
1. Мейоз и оплодотворение. Их место в жизненном цикле животных и растений, роль в сохранении постоянного числа хромосом.
Мейоз — способ деления клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.
Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I. В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), затем обмениваются участками. При кроссинговере осуществляется перекомбинация генов. После кроссинговера хромосомы разъединяются.
В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления. В анафазе I к полюсам клетки расходятся хромосомы из каждой гомологичной пары; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке. Затем следует телофаза I — образуются две клетки с гаплоидным числом двухроматвдных хромосом; поэтому первое деление мейоза называют редукционным. После телофазы I следует короткая интерфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.
Второе деление мейоза отличается от митоза только тем, что его проходят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II. В метафазе II двухроматидные хромосомы располагаются по экватору; процесс идет сразу в двух дочерних клетках. В анафазе П к полюсам отходят уже однохроматидные хромосомы. В телофазе II в четырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деления мейоза образуются четыре клетки с гаплоидным набором хромосом (lnlc); второе деление называют уравнительным. Так образуются гаметы у животных и человека или споры у растений.
"Значение мейоза состоит в том, что создается гаплоидный набор хромосом и условия для комбинативной наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом.
Отличие митоза от мейоза состоит в том, что митоз — это такое деление клетки, в результате которого получаются две клетки с исходным набором хромосом; митоз — это бесполый процесс размножения. При мейозе в результате двух последовательных митотических делений из исходной диплоидной клетки (2п) образуются четыре гаплоидные (п). При этом происходит перекомбинация наследственных признаков вследствие кроссинговера, происходящего в профазе I мейоза.
2. Общая характеристика бактерий.
Бактерии не имеют ядра, отделенного мембраной от цитоплазмы. Большинство бактерий не содержит хлорофилла и питается готовыми органическими веществами – гетеротрофно
Размножение простым делением (возможен элементарный половой процесс)
Питание гетеротрофное:
сапрофиты (используют органические вещества мертвых организмов); паразиты (используют органические вещества живых организмов); у некоторых - автотрофное: фотосинтезирующие (зеленые и пурпурные бактерии, цианобактерии); хемосинтезирующие (железобактерии, серобактерии, аммонифицирующие и нитрифицирующие бактерии)
Дыхание аэробное-у живущих в кислородной среде; анаэробное - у живущих в бескислородной среде;
факультативные анаэробы способны жить и в кислородной и в бескислородной среде
Бактерии могут образовывать споры - приспособление к выживанию в неблагоприятных условиях.
3. Ископаемые животные свидетельство в пользу эволюции.
Обнаружение ископаемых останков археоптерикса позволило сделать вывод о существовании переходной формы между пресмыкающимися и птицами.
Голова напоминала голову ящерицы, на крыльях сохранились пальцы с когтями, имелся длинный хвост.
Билет №24
1. Этапы развития многоклеточного животного.
Эмбриональное развитие: 1.Зигота(оплодотворенная яйцеклетка)->2. Бластула(стадия 2-128 клеток(полый шар))-> 3.Гаструла(2 слоя клеток. Имеет 2 зародышевых листа- эктодерму и энтодерму)-> 4. Зародыш(образуется мезодерма, формируются органы)-> Пост эмбриональное развитие:1. Прямое (Организм сразу после рождения сходен со взрослым). 2.Непрямое (Организм после рождения проходит промежуточные стадии (личинка и т.п.))
Вероятный путь возникновения жизни
1.Синтез в первичном океане органических веществ из неорганических под действием небиологических факторов.-> 2. Возникновение коацерватных капель(самопроизвольное концентрирование веществ)-> 3. Возникновение самовоспроизводящихся молекул, способных к матричному синтезу.
2.Человеческие расы. Генетическое разнообразие человечества. Расы и нации.
Основные человеческие расы. В современном человечестве выделяют три основные расы: европеоидную, монголоидную и негроидную. Это большие группы людей, отличающиеся некоторыми физическими признаками, например чертами лица, цветом кожи, глаз и волос, формой волос.
Для каждой расы характерно единство происхождения и формирования на определенной территории.
К европеоидной расе относится коренное население Европы, Южной Азии и Северной Африки. Европеоиды характеризуются узким лицом, сильно выступающим носом, мягкими волосами. Цвет кожи у северных европеоидов светлый, у южных — преимущественно смуглый.
К монголоидной расе относится коренное население Центральной и Восточной Азии, Индонезии, Сибири. Монголоиды отличаются крупным плоским широким лицом, разрезом глаз, жесткими прямыми волосами, смуглым цветом кожи.
В негроидной расе выделяют две ветви — африканскую и австралийскую. Для негроидной расы характерны темный цвет кожи, курчавые волосы, темные глаза, широкий и плоский нос.