9640 (645857), страница 4

Файл №645857 9640 (Конспект лекций по биофизике) 4 страница9640 (645857) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Родоспин, М=28000 Да, форма сферы, d=4 нм, мелкая молекула.

Динамические свойства белков.

  1. Латеральная диффузия. все значения для белков с М=100000, К=3*10–10 см/сек. Но белки могут объединяться в кластеры, которые мало подвижны.

  2. Вращательная диффузия К=0,34 сек.

  3. flip-flop переходы, К=10–4 сек – частота flip-flop перехода.

Модели биологических мембран

В 1935 г. модель Даниэля Доусона унитарная модель био мембран. Липидный бислой – структурная основа. Наружный и внутренний слои – глобулярные белки. Симметричная модель.

Модель Робертсона (середина 60х г). Мембрана представляет собой 3х слойную структуру, средний слой из липидов. Белковые молекулы развернуты на поверхности двойного липидного слоя вследствие электростатических взаимодействий заряженными головками фосфолипидов. Модель Робертсона ассимметрична, так как на наружной поверхности мембраны – гликопротеиды.

В группе моделей предполагается наличие белков матрицы. Модель Лючи (середина 60х г.) – белково-кристаллическая модель.

Модель _______________ (1970) сохраняется концепция липидного бислоя, однако этот слой прирастается участками симметрично расположенных белков, они жестко фиксированны пространственно за счет дальнодействующих белок-белковых свойств.

Модель Сенгера и Николсона. 60-70 г. Основа – липидный бислой, в который включены молекулы интегральных и периферических белков.

Жидкомозаичная модель. С ее помощью объясняется проницаемость мембран.

Мембранный транспорт

Активный: вещества переносятся через мембрану против концентрационного, электрического и других видов градиентов, на это тратится энергия клеточного метаболизма. Первичный активный транспорт и вторичный активный транспорт.

Пассивный: вещество без затрат энергии клеточного метаболизма переносится через мембрану в направлении градиента. В его основе диффузия и осмос.

Диффузия

определяется движением молекулярных частиц по направлению концентрационного градиента. Диффузия в физике рассматривается на примере простых моделей. Для полной диффузии необходимо несколько суток. Для био систем скорость диффузии не изменяется, но она осуществляется очень быстро. Процесс диффузии через мембрану изучают на примере:

Скорость диффузии будет определяться количеством вещества, диффундирующем в единицу времени.

Закон Фика.

dQs/dt=Ds*A*dCs/dx

dQs/dt – количесво вещества диффундирующее в единицу времени

Ds – коэффициент диффузии

А – площадь поверхности

dCs/dx – концентрационный градиент (изменение концентрации вещества с расстоянием)

Для скорости диффузии важной величиной является концентрационный градиент. Коэф диффузии зависит от природы и молекулярной массы растворенного вещества и растворителя. Из правого в левый движение хаотичное, но оно не велико. Будут наблюдаться однонаправленные потоки – количество растворенного вещества, пересекающих единицу площади поверхности молекулы за 1 секунду в данном направлении.

Iоднонапр потока = dQs/dt , I измеряется в моль/см2*сек.

Однонаправленный поток вещества в одном направлении не зависит от потока этого же вещества в противоположном направлении.

dQs/dt=P*(C1-C2),

для описания диффузии незаряженных молекул.

Р – проницаемость мембраны,

(C1-C2) – разность между концентрацией вещества 1 и 2.

[C]=моль/см3,

[P]=cм/с.

Скорость движения незаряженных молекул является линейной функцией концентрационного градиента. Р является функцией рассматриваемых мембран и диффунцирующего вещества.

Р=Дм*К/х,

Дм коэффициент диффузии вещества внутри мембраны (чем больше вязкость мембраны, тем больше диффузия молекул, тем ниже эта величина). К- коэффициент распределения. х – величина толщины мембраны. Коэффициент проницаемости от 10–12 до 10–2 см/сек эритроцитарный.

Под действием антидиуретического гормона проницаемость мембраны может возрастать в 10 раз.

Осмос

1748 г. – открытие осмоса. Офицально считается, что открыл Жан-Антуан Молле. Особые свойства мочевого пузыря лягушки. установил, что эта мембрана обладает особым свойством: если по одну сторону чистая вода, по другую растворенные вещества (растворы сахаров). В этих условиях вода начинает активно проникать через мембрану мочевого пузыря в раствор.

Осмос заключается в переходе молекул воды через мембрану по направлениям ее концентрационных градиентов. Наступает равновесие (динамическое) определяется фактором осмотического давления (направление слева направо).

Гидростатическое давление раствора в правом отсеке, когда эти два давления уравновесили друг друга, то мы получим равновесие. Вывод: для того, чтобы измерить осмотическое давление раствора нужно измерить гидростатическое давление во втором отсеке.

В 1877 г. Пфейффер определил количественный показатель осмоса с помощью осмометра (имеет полупроницаемую мембрану – из осадочного ферроцианида Сu). Пфейффер сделал заключение – осмотическое давление пропорционально концентрации растворенного вещества.

Вант-Гофер: в термодинамическом отношении молекулы воды ведут себя подобно молекулам газа.

π=RTS или π=RTη/V,

π – осмотическое давление,

RTη – количество молей вещества,

R – газовая постоянная,

Т – абсолютная температура,

С – концентрация.

Это выражение справедливо лишь для разбавленных растворов.

Осмотичность:

два раствора, в которых создается одинаковое осмотическое давление по обе стороны мембраны проницаемой только для воды называются изоосмотическими, растворы содержат в единице объема одинаковое число растворенных молекул. Если один из растворов имеет осмотическое давление по отношению к другому, то первый раствор называется гиперосмотически, второй – гипоосмотическим.

Тоничность:

определяется по реакции клеток и тканей на их погружение в раствор; если при погружении в раствор ткань не набухает, не сморщивается, такой раствор называют изотоническим по отношению к ткани. Если при погружении ткань набухает – раствор гипотонический, если ткань сморщивается – раствор гипертонический.

Транспорт ионов

Необходимо учитывать и влияние электрических сил.

  1. На заряженные частицы (органические и неорганические ионы) действуют 2 силы, определяющие их диффузию через мембрану: концентрационный градиент и электрическая сила (определяется разностью потенциалов). Совокупность этих двух сил составляет электрохимический потенциал.

  2. Существует разность потенциалов, уравновешивающая действующий на данный ион концентрационный градиент и предотвращающая трансмембранный перенос данного иона. В этой ситуации будет существовать некоторое состояние равновесия – электрохимическое равновесие, а соответствующие потенциалы мембраны будут называться равновесными потенциалами. Например, на мембране много К+, идет отток К+. Если зарядить внутреннюю поверхность мембраны до –97 мВ, для Na+ равновесный потенциал ≈ +55 мВ.

  3. Диффузия заряженных частиц может происходить против концентрационного градиента, если электрический градиент будет направлен противоположно концентрационному и будет превышать его действие.

Доннановское равновесие

Фредерик Доннан – физико-химик, 1911 г.

Если налить в сосуд с полупроницаемоей перегородкой воды, то в 1 и 2 будет вода. Доннан добавил в первый отсек соль KCl. По прошествии определенного времени концентрации различных ионов в двух отсеках стали равны. Доннан взял соль с органическими ионами, которые не проходят через мембрану. Через некоторое время ионы K+ и Clначинают диффунцировать. Наступает ситуация при которой в первом отсеке [K+] больше, чем во втором, в первом отсеке [Cl] меньше, чем во втором.

Вывод: анион, не проходящий через мембрану оказывает на распределение анионов и катионов, свободно проходящих через мембрану между отсеками.

Такая же ситуация наблюдается и в клетках и в биосистемах. Установленное Доннаном равновесие обусловлено несколькими фактами:

  1. Оба отсека по отдельности должны быть электронейтральными, то есть в каждом отсеке число "+" ионов должно быть равно числу "–" ионов.

  2. Диффундирующие ионы (K+ и Cl) пересекают мембрану парами, при этом сохраняется электронейтральность отсеков. Вероятность пересечения мембраны этими ионами определятется произведением их концентраций [K+]*[Cl].

  3. В равновесии скорость диффузии KCl в одном направлении равна скорости диффузии KCl в противоположном направлении. Поэтому [K+]*[Cl] должно быть одинаковым для обоих отсеков.

Математическое выражение Доннановского равновесия:

[K+]2/[K+]1=([A]1+[Cl]1)/[Cl]2.

Механизмы пассивного транспорта через мембраны

Пассивный транспорт осуществляется главным образом тремя способами:

  1. Вещества, находящиеся в водной фазе по одну сторону мембраны, растворяются в липидно-белковом слое мембраны, пересекают его и вновь переходят в водную фазу с противоположной стороны мембраны.

  2. Вещества, которые перемещаются через поры или каналы мембраны, заполненные водой.

  3. Молекулы транспортируемого вещества соединяются с молекулой переносчиком, встроенным в мембрану и переносчик опосредует или облегчает транспорт – этот транспорт называют облегченной или опосредованной диффузией. Молекулы переносчика всегда жирорастворимы, они ускоряют транспорт веществ по их концентрационному или электрохимическому градиенту.

Первый механизм:

Простой транспорт. Он осуществляется под влиянием теплового движения частиц. Для того, чтобы попасть из водной фазы в липидную, молекула должна разорвать все свои водородные связи с водой, на это затрачивается энергия 5 ккал/моль водородных связей. Чем меньше молекула образует водородных связей, тем больше ее шансы проникнуть через мембрану. Этот вид транспорта только для незаряженных молекул. На подвижность молекулы внутри мембраны будет влиять молекулярная масса и форма молекулы. Но самый главный фактор – это коэффициент распределения. Он определяется экспериментально: берется пробирка, соедржащая равные объемы (количества) воды и оливкового масла, затем в нее добавляется исследуемое вещество. Пробирку хорошенько встряхивают, чтобы смесь распределилась по всему объему. Затем определяют концентрацию этого вещества в воде и в масле.

Коэф. распр. К = конц в-ва в липидной фазе / конц в-ва в водной фазе.

1937 г. Колландер Р. провел очень большие исследования на гигантских клетках пресноводных водорослей, которые были посвящены изучению зависимости коэф. распр. и проницаемости мембраны для веществ  существует некая генеральная зависимость.

Распределение точек для различных веществ. Но были исключения, например H2O, CO2 и другие мелкие незаряженные молекулы – наблюдаются большие колебания К и проницаемости. Гексанол (1 ОН) и монитол (6 ОН) одинаковы по элементарному составу. Это приводит к тому, что –ОН группы образуют водородные связи с водой, поэтому снижается растворимость вещества в липидах, это сказывается на К. Наличие только одной –ОН группы снижает К  в 40 раз.

Поэтому гексанол диффундирует гораздо быстрее, чем монитол.

В отношении воды было сделано предположение: она дополнительно диффундирует через поры мембраны. Это было доказано экспериментально: если брать синтетическую мембрану, но состоящую только из липидов, вода проходит через нее  еще одни механизм, связанный с динамическими свойствами липидов. Так как во время этих динамических движений образуются дефекты и очень подвижные молекулы воды успевают протикнуть через них через мембрану.

Кинетика такого транспорта характеризует графическую зависимость скорости поступления через мембрану от концентрации вещества вне клетки. Эта прямая отражает кинетику без насыщения (то есть концентрация вещества может возрастать до бесконечености). Такая кинетика отличает простую диффузию от двух других механизмов пассивного транспорта.

Второй механизм:

Диффузия через мембранные каналы. Основная масса каналов специфична (пропускает только один вид ионов), другие или не- или частично специфичны, причем каналы заполнены водой. Это доказано экспериментрально в наблюдениях на искусственном липидном бислое. Если на его поверхность поместить электролит, то прохождения ионов нет, если добавить каналообразующие белки, то возникает электрический ток. Каналообразующие белки выделяют из природного сырья, причем они самостоятельно встраиваются в мембрану. В настоящее время разработаны методы выделения каналообразующих белков. Нестатин – противогрибковый антибиотик, его молекулы представляют собой стержневидные образования, которые могут встраиваться, как в естественные, так и в искусственные мембраны.

Через такие поры могут проходить отрицательные ионы (Cl, молекулы воды, мочевина, мелкие незаряженные частицы, +заряженные частицы не проходят). На такой модели изучали этот вид транспорта. В области высокой концентрации наблюдается явление насыщения, так как пропускная способность ионноых каналов ограничена. Но в биосистемах явления насыщения не встречается.

Третий механизм:

Облегченная диффузия.

Это говорит, что скорость увеличивается только при относительно низких концентрациях. Это кинетика насыщения.

Причины кинетики насыщения:

  1. Связывание проникающей молекулы с определенным участком внутри канала или вблизи него.

  2. Основная причина – транспорт вещества через мембрану с помощью молекулы-переносчика:

а) количество молекул-переносчиков ограничено,

Характеристики

Тип файла
Документ
Размер
264 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6639
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее