Bioteh (645713), страница 3

Файл №645713 Bioteh (Биотехнология) 3 страницаBioteh (645713) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Среди новых средств защиты растений — вещества биогенного происхождения, ингибирующие откладку яиц насекомыми или стимулирующие активность естественных врагов насекомых вредителей: хищников, паразитов .

Разнообразны средства защиты растений от фитопатогенных микроорганизмов.

1. Антибиотики. Примерами могут служить триходермин и трихотецин, продуцируемые грибами Trichoderma sp. и Trichotecium roseum. Эти антибиотики используются для борьбы с корневыми гнилями овощных, зерновых и технических культур.

2. Фитоалексины, естественные растительные агенты, инактивирующие микробных возбудителей заболеваний. Эти соединения, синтезируемые в тканях растений в ответ на внедрение фитопатогенов, могут служить высокоспецифичными замените-

лями пестицидов. Фитоалексин перца успешно применяли при фитофторозе. Могут быть использованы также вещества, сти­мулирующие синтез фитоалексинов в растительных тканях.

3. Использование микробов-антагонистов, вытесняющих пато­генный вид и подавляющих его развитие.

4. Иммунизация и вакцинация растений. Вакцинные препара­ты стремятся вводить непосредственно в прорастающие семена.

5. Введение в ткани растений специфичного агента (d-фактора), снижающего жизнеспособность возбудителя.

Биологические средства — важная составная часть комплекс­ной программы защиты растений. Эта программа предусматри­вает проведение защитных мероприятий агротехнического, биоло­гического и химического плана наряду с использованием устой­чивых сортов растений. Задачей комплексной программы явля­ется поддержание численности вредителей растений на экологи­чески сбалансированном уровне, не наносящем ощутимого вреда культурным растениям.

Биологические удобрения. Биологические (бакте­риальные) удобрения применяют для обогащения почвы связан­ным азотом. Большое распространение получили препараты нитрагин и азотобактерин — клетки клубеньковых бактерий и азотобактера, к которым добавляют стабилизаторы (мелассу, тиомочевину) и наполнитель (бентонит, почву). Азотобактерин обогащает почву не только азотом, но и витаминами и фитогормонами, гиббереллинами и гетероауксинами. Препарат фосфо-бактерин из Bacillus megaterium превращает сложные органиче­ские соединения фосфора в простые, легко усвояемые расте­ниями. Фосфобактерин также обогащает почву витаминами и улучшает азотное питание растений.

Растения синтезируют ряд соединений, регулирующих их рост и развитие (фитогормоны, биорегуляторы). К их числу принадле­жат ауксины, гиббереллины, цитокинины. Созревание плодов стимулирует этилен. Эти биорегуляторы находят применение в сельском хозяйстве. К числу новых, обнаруженных в послед­ние годы биорегуляторов относят пептиды, имеются перспек­тивы их применения в сельском хозяйстве.

Биотехнология и животноводство.

Большое значение в связи с интенсификацией животноводства отводится профилактике инфекционных заболеваний сельскохозяйственных животных с применением рекомбинантных живых вакцин и генноинженерных вакцин-антигенов, ранней диагностике этих заболеваний с по­мощью моноклональных антител и ДНК/РНК-проб.

Для повышения продуктивности животных нужен полноцен­ный корм. Микробиологическая промышленность выпускает кор­мовой белок на базе различных микроорганизмов — бактерий,

грибов, дрожжей, водорослей. Богатая белками биомасса одно­клеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет получить 0,4- 0,6 т свинины, до 1,5 т мяса птиц, 25—30 тыс. яиц и сэкономить 5—7 т зерна (Р. С. Рычков, 1982). Это имеет большое народнохозяйственное значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице.

Одноклеточные организмы характеризуются высоким содержа­нием белка — от 40 до 80% и более. Белок одноклеточных богат лизином, незаменимой аминокислотой, определяющей его кормовую ценность. Добавка биомассы одноклеточных к недо­статочным по лизину растительным кормам позволяет приблизить их аминокислотный состав к оптимальному. Недостатком био­массы одноклеточных является нехватка серусодержащих аминокислот, в первую очередь метионина. У одноклеточных его приблизительно вдвое меньше, чем в рыбной муке. Этот недостаток присущ и таким традиционным белковым кормам, как соевая мука. Питательная ценность биомассы одноклеточных может быть значительно повышена добавкой син­тетического метионина.

Производство кормового белка на основе одноклеточных — процесс, не требующий посевных площадей, не зависящий от климатических и погодных условий. Он может быть осуществлен в непрерывном и автоматизированном режиме.

В нашей стране производится биомасса одноклеточных, в особенности на базе углеводородного сырья. Достигнутые успехи не должны заслонять проблемы, возникающей при использо­вании углеводородов как субстратов для крупномасштабного производства белка, — ограниченность их ресурсов. Важнейшими альтернативными суб­стратами служит метанол, этанол, углеводы растительного про­исхождения, в перспективе водород.

Очищенный этанол на мировом рынке стоит почти вдвое дороже метанола, но этанол отличается очень высокой эффективностью биоконверсии. Из 1 кг этанола можно получить до 880 г дрожжевой массы, а из 1 кг метанола-до 440 г. Биомасса из этанола особенно богата лизином — до 7%.

Большое значение для животноводства имеет обогащение растительных кормов микробным белком. Для этого широко применяют твердофазные процессы.

Перспективными источниками белка представляются фото-трофные микроорганизмы, в особенности цианобактерии рода Spirulina и зеленые одноклеточные водоросли из родов Chlorella и Scenedesmus. Наряду с обычными аппаратами для их выращи­вания используют искусственные водоемы. Добавление к расти­тельным кормам биомассы Scenedesmus позволяет резко повысить эффективность усвоения белков животными.

Таким образом, существуют разнообразные источники сырья для получения биомассы одноклеточных. Некоторые субстраты (этанол) дают столь высококачественный белок, что он мо­жет быть рекомендован в пищу. Цианобакте­рии рода Spirulina издавна используют в пищу ацтеки в Центральной Америке и племена, обитающие на озере Чад в Африке.

2. Технологическая биоэнергетика

Технологическая биоэнергетика — одно из направлений био­технологии, связанное с эффективным использованием энергии, запасаемой при фотосинтезе. Это может быть достигнуто путем: 1) превращения биомассы, накопленной в результате фотосинте­за в дешевое и высококалорийное топливо — метан и другие углеводороды, этанол и т. д.; 2) модификации самого процесса фотосинтеза, в результате которой энергия света с максимальной эффективностью используется на образование водорода или другого топлива, минуя стадию фотоассимиляции СО2 и син­теза компонентов клетки. На уровне теоретических разработок находится идея непосредственного преобразования энергии Солн­ца в электрическую (биофотоэлектрические преобразователи энергии).

Рассмотрим вначале путь, пролегающий через использование биомассы, в первую очередь, растительной, ресурсы которой в мире огромны и оцениваются в 100 млрд. т по сухому веществу в год. Лишь незначительная часть ее расходуется человечеством, но и эта часть дает до 14% потребляемой в мире энергии. Биомасса — не только возобновляемый и почти даровой источ­ник энергии, но и альтернатива тающим запасам полезных ископаемых.

Получение этанола как топлива.

Этанол — экологически чистое топливо, дающее при сгорании СО2 и Н2О. Он исполь­зуется в двигателях внутреннего сгорания в чистом виде или как 10—20%-ная добавка к бензину (газохол). В Бразилии уже к 1983 г. 75% автомобилей работали на 95%-ном этаноле, а ос­тальные — на газохоле. В США предполагают заменить на эта­нол 10% потребляемого бензина. Широкое внедрение этанола планируется в странах Западной Европы.

На значительных посевных площадях намечают выращивать сельскохозяйственные культуры, предназначенные для биотех­нологической переработки в этанол. В условиях дефицита посевных площадей возникает проблема, которая уже в наши дни актуальна для Бразилии и выражается дилеммой: продо­вольствие или энергия. Производство этанола из растительного сырья не является безотходным: на каждый литр спирта при-

ходится 12—14 л сточных вод с высокой концентрацией отхо­дов, опасных для природных экосистем. Проблема рациональной переработки этих отходов не решена.

Классическим биообъектом, используемым при получении спирта, являются дрожжи Saccharomyces cerevisiae. Дрожжи име­ют ряд недостатков.

1. Конкуренция брожения и дыхания. Субстрат (например, глюкоза) лишь частично сбраживается до этанола. Оставшаяся часть безвозвратно теряется, превращаясь в результате дыхания в СО2 и Н2О. Процесс необходимо вести в анаэробных условиях или применять мутанты дрожжей, утратившие митохондрии и не способные к дыханию.

2. Чувствительность к этанолу, которая снижает выход целе­вого продукта на единицу объема биореактора. Получены устойчивые к этанолу мутанты, характеризующиеся измененным строением клеточных мембран.

3. Отсутствие ферментов, катализирующих расщепление крахмала, целлюлозы, ксилана. Необходим предварительный гидролиз субстрата или засев биореактора смешанной культурой, содержащей, помимо S. cerevisiae, микроорганизмы с соответ­ствующей гидролитической активностью.

Бактерия Zymomonas molilis, применявшаяся центрально­американскими индейцами для сбраживания сока агавы, более эффективно сбраживает сахара и более устойчива к этанолу. Дальнейшее повышение устойчивости Z. mobilis к этанолу до­стигается добавлением в среду инкубации Mg2+ и ряда нуклео-тидных компонентов.

Термофильные бактерии, продуценты этанола характеризу­ются высокой скоростью роста и метаболизма, чрезвычайно стабильными ферментами, необычной для остальных бактерий устойчивостью к этанолу (до 15% и более). Термофилы спо­собны к биоконверсии полисахаридных субстратов в этанол. Так, Thermoanaerobium brockii сбраживает крахмал, Clostridium thermocellumцеллюлозу, Cl. thermohydrosulfuricum утили­зирует продукты деградации целлюлозы с очень высоким выхо­дом спирта. Перспективно применение экстремально термофиль­ного продуцента спирта Thermoanaerobacter ethanolicus. Пла­нируют использование также ацидофильных (оптимум рН 1,5) и галофильных продуцентов спирта.

Повышение выхода спирта и стабилизация активности его про­дуцентов могут быть достигнуты путем иммобилизации клеток. Так, эффективный синтез этанола осуществлен с применением клеток Z. mobilis, иммобилизованных на хлопчатобумажных во­локнах (S. Prentis, 1984).

Получение метана и других углеводородов.

Получение мета­на — важный путь утилизации сельскохозяйственных отходов. Он получается в виде биогаза — смеси метана и СО2. Присут­ствие СО2 ограничивает теплотворную способность биогаза как топлива, которая в зависимости от соотношения СН4/СО2 составляет 20,9—33,4 кДж/м3. Содержание метана в биогазе варьирует от 50 до 85%.

Непосредственно к образованию метана способна небольшая группа микроорганизмов, относящихся к архебактериям. Жиз­недеятельность метанобразующих архебактерий протекает в строго анаэробных условиях. Субстратами для образования ме­тана могут служить муравьиная и уксусная кислоты, метанол, газовые смеси (Н2 + СО, Н2 + СО2). Поскольку биогаз практиче­ски получают из сложных органических веществ (целлюлозы, крахмала, белков, липидов, нуклеиновых кислот), то для метан-образования применяют многокомпонентные микробные ассо­циации.

Наряду с метанобразующими бактериями в состав таких ассоциаций входят микроорганизмы, переводящие органические субстраты в метанол, муравьиную и уксусную кислоты, Н2, СО и т. д. Примером может служить метаногенная ассоциация «Methanobacillus Kuzneceovii », образующая метан при разложе­нии биомассы водорослей (Чан Динь Тоай, 1984).

Процесс метанобразования отличается высокой эффективно­стью: до 90—95% используемого углерода переходит в метан. Поэтому метаногенные ассоциации с успехом используют для очистки сточных вод от органических загрязнений с одновремен­ным получением высококалорийного топлива. До 5—10% потреб­ленного углерода превращается в биомассу, которая также нахо­дит применение. Используют как жидко-, так и твердофазные про­цессы получения биогаза (биогазификации).

Наряду с биогазом метаногенные ассоциации образуют дру­гие ценные продукты, например витамин В12 После переработки органического субстрата в биогаз остается материал, представ­ляющий собой ценное минеральное (азотное и фосфорное) удобрение.

Получение биогаза — процесс, отличающийся простотой обо­рудования и доступностью сырья, требует небольших капитало­вложений. В Китае, Индии, ряде других стран эксплуатируются небольшие установки, в которые вносят подручный материал (солому, навоз и др.), что исключает затраты на доставку сырья. В Китае действует свыше 7 млн. малых установок вместимостью 10—15 л, достаточных для удовлетворения энергетических потреб­ностей семьи из пяти человек.

Кроме метаногенных анаэробов существует другая группа организмов — продуцентов углеводородов как заменителей топ­лива. Это микроводоросли — Botryacoceus, Isochrysis, Nanochlo-ropsis и др. Углеводороды накапливаются в значительных коли­чествах — до 80% сухой массы клеток. В США действует ферма для выращивания водорослей с суммарной площадью водоемов 52 тыс. гектаров, дающая около 4800 м3 жидких углеводородов в сутки. Для улучшения топливных характеристик полученные из водорослей углеводороды подвергают гидрированию (Г Н Чер­нов, 1982).

Получение водорода как топлива будущего.

Получение водо­рода как топлива пока остается на уровне поисковых разработок. Это абсолютно чистое топливо, дающее при сгорании лишь Н2О, отличается исключительно высокой теплотворной способностью — 143 кДж/г. Химический и электрохимический способы получения Н2 неэкономичны, поэтому заманчиво использование микроорга­низмов, способных выделять водород. Такой способностью обла­дают аэробные и анаэробные хемотрофные бактерии, пурпурные и зеленые фототрофные бактерии, цианобактерии, различные водоросли и некоторые простейшие (Е. Н. Кондратьева, И. Н. Го-готов, 1981). Процесс протекает с участием гидрогеназы или нитрогеназы.

Гидрогеназа — фермент, содержащий FeS-центры. Она ката­лизирует реакцию

+ + 2е- = Н2

Характеристики

Тип файла
Документ
Размер
261,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6508
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее