73919-1 (644615), страница 3

Файл №644615 73919-1 (Джеймс Клерк Максвелл) 3 страница73919-1 (644615) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Одновременно с Гельмгольцем Максвелл исследовал законы цветового зрения. Как предшественник австрийца Больцмана и американца Гиббса, он обосновал статистическое понимание кинетической теории газа. Его величайшей заслугой, однако является математическая разработка нового учения о магнетизме, электричестве и свете. Его достижения, по словам Планка, должны быть отнесены к «величайшим, изумительнейшим подвигам человеческого духа».

Когда Максвелл начинал свой путь физика, в сознании естествоиспытателей повсеместно и неколебимо царили законы ньютоновской механики. Все естественные явления старались объяснить с помощью простых механических законов движения в пространстве.

Подъем физики, связанный с открытием закона сохранения и превращения энергии, обеспечил в середине XIX века механистическому пониманию природы новую надежную поддержку. «Только механическое понимание является наукой», – заявлял берлинский физиолог Эмиль Дюбуа-Реймон. Нечто подобное писал и Гельмгольц: «Конечная цель всего естествознания – раствориться в механике».

Программе этого воззрения на природу, впервые изложенного в манускриптах Леонардо да Винчи, в трудах Галилея и философски обоснованного Декартом, законченную форму придал Ньютон в 1687 году в своем знаменитом произведении о математических началах учения о природе.

По Ньютону, мир вещей мог быть механически описан посредством указания четырех величин: времени, пространства, момента массы и силы. Время и пространство рассматривались при этом как «абсолютные»: оторванно и независимо от вещей, их заполняющих, и от событий, в них происходящих.

Кроме того, время и пространство строго разграничивались между собой. Взаимосвязь и взаимное влияние устанавливались только между моментами масс и силами. Все естественные процессы представлялись закономерными перемещениями материальных точек в пространстве и времени.

Эта «механика материальных точек», математически обоснованная Эйлером и Лагранжем, блестяще оправдалась и оказалась чрезвычайно плодотворной прежде всего в области астрономии. Ее основы были позднее распространены на движение жидкостей и упругие колебания тел и особенно успешно использовались при исследовании акустических явлений. Но в отдельных вопросах отчетливо выявилась ее ограниченность. Особенно часто возникали непреодолимые трудности в оптике.

Самым неудовлетворительным разделом в системе классической физики, созданной Ньютоном, было учение о свете.

Ньютон, следуя логике своего учения, считал свет естественной вещью, состоящей из материальных точек. Но уже в его время, как заметил Эйнштейн, «назревал жгучий вопрос: что происходит с материальными точками, образующими свет, когда свет поглощается?». Так неизбежно пришли к различию между весомыми и невесомыми частицами – малоубедительное решение, которое не могло долго считаться исчерпывающим объяснением.

Неудобства для глубоко мыслящих физиков таило в себе также представление о «силах дальнодействия».

Магнетизм, электричество и гравитация изображались как силы, действующие в пустом пространстве и распространяющиеся с бесконечно большой скоростью. Такое толкование физических взаимодействий, представляющее их едва ли не как сверхъестественные силы, не соответствовало трезво реалистической механистической картине природы. Уже Ньютон искал выход, но не добился успеха.

Не было недостатка в попытках объяснить световые явления принципиально иным способом. Гениальный голландский физик Христиан Гюйгенс, старший современник Ньютона, пытался охватить природу света своей теорией световых волн. Он предположил, что свет существует в виде продольных колебаний, которые распространяются в веществе, состоящем из мелких частиц, во все стороны от источника возбуждения, подобно звуку в воздухе.

Во всяком случае, сторонники Гюйгенса тщетно старались противопоставить его волновое представление корпускулярной теории света, которая поддерживалась высоким авторитетом Ньютона; это особенно показательно как пример тормозящего влияния, которое может оказать в науке большой авторитет. Борьба между корпускулярной и волновой теориями позднее повторилась и при объяснении других видов излучения.

Волновая теория света смогла победить только после того, как английский врач и физик Томас Юнг и французский естествоиспытатель и инженер Огюстен Френель в первых десятилетиях XIX века придали ей иной облик.

Юнг и Френель исходили из того, что свет распространяется не в виде продольных колебаний, подобных колебаниям воздуха во время игры на флейте, а в виде поперечных колебаний, подобных колебаниям скрипичной струны. С колебаниями такого рода связаны оптические явления поляризации, дифракции и интерференции света, которые не поддавались объяснению на основе ньютоновской корпускулярной теории света.

Гипотетическая основа световых колебаний (механический носитель волн света) стала со времени Гюйгенса называться световым эфиром, или, короче, эфиром.

Поскольку свет представляли себе в виде продольных волн, можно было вообразить эфир как разреженный газ. Если же распространение света предполагалось в форме поперечных волн, тогда следовало эфир мыслить как твердое упругое тело. При весьма малой плотности он должен быть тверже, чем сталь и алмаз. Одновременно световому эфиру приписывали полнейшую проницаемость, с тем, чтобы небесные тела могли двигаться сквозь него без помех, как они это и делали со всей очевидностью. Эфир должен был обладать инерционной массой, но не мог иметь гравитационной массы.

Все эти свойства не уживались между собой. Таким образом, эфир представлял собой весьма загадочное явление и был предметом постоянных забот механистического мировоззрения, ибо он упорно сопротивлялся любой попытке механического осмысления. Гипотеза эфира оказалась недостоверной в своей основе.

Радикальный обоснованный ответ на этот загадочный вопрос дал в начале XX столетия Эйнштейн, отказавшись при изложении законов электродинамики от эфира. Однако первый и важный шаг на пути к современной картине природы без эфира сделал еще Максвелл, создав электродинамическую теорию света, пошатнувшую традиционную механическую теорию.

У Максвелла было два предшественника, на исследования которых он опирался: Эрстед и Фарадей.

Ганс Христиан Эрстед, датский врач и естествоиспытатель, в первой половине XIX века был профессором физики в Копенгагене. В 1820 году, во время эксперимента, сопровождавшего лекцию, он впервые заметил магнитное действие электрических токов. Таким образом, он стал первооткрывателем электромагнетизма. Это открытие имело большое научное и техническое значение. Оно привело к изобретению электромагнитного телеграфа и в дальнейшем к созданию электромотора.

Другой физик, Майкл Фарадей, сын кузнеца и естествоиспытатель-самоучка, ставший профессором Королевского института в Лондоне, считается одним из самых изобретательных экспериментаторов в истории точных естественных наук. Максвелл исходил непосредственно из его опытов.

К достижениям Фарадея в области физической химии в числе прочих относятся обнаружение законов электролиза, исследование сжижения газов и открытие бензола, важного углеводородного соединения. Его наблюдения явлений, происходящих при достаточно высоком напряжении переменного тока на электродах в вакуумной трубке, создали предпосылку для работы с катодными лучами, сыгравшими столь важную роль в становлении современной физики.

Но наибольшее значение впоследствии приобрели исследования Фарадеем электромагнитной индукции. В 1831 году, через 11 лет после наблюдения, сделанного Эрстедом, в результате долгих поисков он открыл в обратном порядке эту природную закономерность. Еще в 1822 году, за два десятилетия до исследования процессов превращения энергии Робертом Майером, он записал в свой лабораторный дневник: «Превращаю магнетизм в электричество». Но только при пятой попытке ему действительно удалось осуществить этот замысел.

Если Эрстед узнал, что переменное электрическое поле вызывает магнитное действие и создает магнитное поле, то Фарадей нашел, что временное изменение в магнитных полях создает в проводниках электрический ток. Это открытие сделало возможным производство электрического силового тока. На нем основано действие динамо-машины и все последующее развитие электротехники.

Но и как физик-теоретик английский исследователь завоевал славу первопроходца. Фарадей в высшей степени обладал способностью делать впечатляюще наглядными результаты своих исследований при помощи геометрическо-механических моделей. Путем объединения явлений электричества и упругости он пришел к понятию «силовые линии». Фарадей с пластической ясностью представлял себе действие электрических сил от точки к точке в пространстве между ними, в их «силовом поле». «Сами электрические и магнитные силы, – писал Генрих Герц в 1889 году, – были для него чем-то существующим реально, действительным, ощутимым; электричество, магнетизм были для него вещами».

Причина возникновения электрических сил лежала, по мнению Фарадея, в процессах, происходящих в пространстве между телами. При поисках признаков различий между намагниченными предметами ему удалось доказать, что все вещества, считавшиеся до тех пор немагнитными, под действием большой магнитной силы обнаруживают явные следы намагниченности. Точно так же он смог доказать, что все считавшиеся надежными изоляторы изменяются под действием электрических сил. Выяснилось, что между проводниками и непроводниками различие не принципиальное, а лишь количественное.

Эти экспериментальные открытия привели к тому, что Фарадей, как физик, мыслящий строго эмпирически, признающий только факты, которые можно наблюдать, отверг представление об электрических силах дальнодействия.

На основе своего представления о силовых линиях Фарадей предполагал уже примерно в 1845 году глубокое родство электричества и света. Эта мысль была необычайно смела для того времени, но она была достойна исследователя, который считал, что только тот находит великое, кто исследует маловероятное. Фарадей, таким образом, пришел к мнению, что учение об электричестве и оптика, стоявшие тогда рядом, но еще не связанные между собой, взаимосвязаны и образуют единую область.

Фарадей, однако, не обладал математическим образованием. Говорили, что он не мог даже возвести в квадрат бином. Таким образом, он был не в состоянии изложить результаты своих исследований при помощи обычных математических средств, он мог охватить их лишь качественно. Формально это являлось очевидным недостатком, но содержанию все-таки в данном случае не наносило ущерба. Отсутствие академически-математической подготовки, по мнению Планка, спасло Фарадея от предубеждений, порождаемых математическими и астрономическими источниками, которые в то время неблагоприятно влияли на многих значительных исследователей.

Работы Фарадея стали исходным пунктом исследований Максвелла.

Как сказал Гельмгольц в 1881 году в своей известной лондонской «Лекции о Фарадее»: «Необходим был Клерк Максвелл – другой человек, столь же глубокий и своеобразный в своих воззрениях, – чтобы возвести в общепринятых формах систематического мышления то великое здание, план которого Фарадей начертил в своем уме, которое он так ясно представлял себе и которое он старался вызвать перед глазами своих современников». Заслуга Максвелла состоит в конечном счете в математической разработке идей Фарадея о магнетизме и электричестве.

«Перед мысленным взором Фарадея представали силовые линии, пронизывающие все пространство, там, где математики видели лишь центры притяжения сил дальнодействия», – писал Максвелл. «Фарадей искал носитель, ту физическую среду, в которой происходят электрические явления; этого оказалось достаточно, чтобы найти закон разности потенциалов, действующих на электрическую жидкость (Во времена Фарадея электрический ток представлялся в виде особой электрической жидкости.). Когда я перевел идеи Фарадея так, как я их понимал, в математическую форму, я нашел, что оба метода, в общем, ведут к одинаковым результатам, но что некоторые открытые математиками методы могут быть гораздо лучше выражены по способу Фарадея».

Используя высокоразвитые математические методы, Максвелл «перевел» модель силовых линий Фарадея в математическую форму. При этом он уточнил и расширил ее, превратив в завершенную теорию электродинамики.

Своими знаменитыми дифференциальными уравнениями Максвелл с высочайшей гениальностью охватил множество электромагнитных явлений. Его формулы ценятся математиками и физиками за их простоту и вызывают восхищение своей красотой. Известный австрийский физик Людвиг Больцман, говоря о них, повторил слова Фауста: «Начертан этот знак не Бога ли рукой?»

Создание Максвеллом уравнений электромагнетизма, открывших век электричества, может рассматриваться как важнейшее теоретическое достижение в истории физики за период, отделяющий теорию гравитации Ньютона от теории относительности Эйнштейна. При этом с точки зрения познания существенно, что электромагнитное силовое поле выступило на равных правах с материальной точкой – как новая форма проявления реальности.

Характеристики

Тип файла
Документ
Размер
512,84 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее