158482 (633684), страница 5
Текст из файла (страница 5)
Типы совместимости:
-
Равнозначность (тождество)
-
Перекрещивание
-
Подчинение (отношение рода и вида)
Отношения между понятиями , изображают с помощью круговых схем 9кругов Эйлера), где каждый круг обозначает объем понятия. Если понятие единичное, то оно также изображается кругом.
-
равнозначными или тождественными называются понятия, которые различаются по своему содержанию, но объемы которых совпадают. Т.е в них мыслится или один и тот же класс, состоящий из одного элемента, или один и тот же класс предметов, состоящий более чем из одного элемента. Примеры равнозначных понятий.:
-
Волга –самая длинная река в Европе.
-
А.П. Чехов –автор комедии «вишневый сад»
-
Равносторонний прямоугольник, квадрат, равноугольный ромб. Объемы тождественных понятий изображаются кругами, полностью совпадающими.
-
Понятия, объемы которых частично совпадают, т.е. содержат общие элементы находятся в отношении перекрещивания.
Например, спортсмен и студент. Они изображаются пересекающимися кругами.
В заштрихованной части 2-х кругов мыслятся студенты, являющиеся спортсменами, или спортсмены являющиеся студентами. В левой части круга А – студенты не являющиеся спортсменами. В правой части круга В – спортсмены, которые не являются студентами.
Отношение подчинения (субординации)
Характеризуются тем, что объемом одного понятия целиком включается в объем другого понятия, но не исчерпывает его. Это отношение вида и рода; А – подчиняющее понятие (млекопитающее), В – подчиненное понятие (логика).
Типы несовместимости:
-
Соподчинение (координация) – это отношение между объемами 2- х или нескольких понятий, исключающих друг – друга, но принадлежащих некоторому, более общему родовому понятию. Например,»ель», «береза», «сосна» принадлежат объему понятия «дерево».
Они изображаются отдельными неперекрещивающимися кругами внутри более обширного круга. Это виды одного и того же рода.
-
В отношении противоположности (контрастности) находятся объемы таких понятий, которые являются видами одного и того же рода, и притом одно из них содержит какие- то признаки, а другое эти признаки не только отрицает, но и заменяет их другими, исключающими (т.е. противоположными знаками). Слова, выражающие противоположные понятия, являются антонимами.
Примеры противоположных понятий: «храбрость»- «трусость», «белая краска» - «черная краска».
-
В отношении противоречия находятся такие 2 понятия, которые являются видами одного и того же рода, и при этом одно понятие указывает на некоторые признаки, а другие эти признаки отрицает, исключает, не заменяя их никакими другими признаками. Круг Эйлера в данном случае делится на 2 части (А и не А), и между ними не существует третьего понятия.
Примеры. Определить отношения между следующими понятиями; изобразить эти отношения кругами Эйлера.
-
дом, недостроенный дом, каменный дом, строение.
2.спортсмен, рабочий, орденоносец.
Логические операции с понятиями. Операции с классами (объемами понятий). Обобщение и ограничение понятий
Операции с классами это такие логические действия, которые приводят нас к образованию нового класса.
Существуют следующие операции с классами: объединение, пересечение, вычитание, дополнение.
-
Объединение (сложение) классов . Объединение (сумма) 2-х классов – это класс тех элементов, которые принадлежат хотя бы к одному из этих 2-х классов. Обозначаются: А+В или А В. Объединение класса четных чисел с классом нечетных чисел дает класс целых чисел.
При объединении:
-
Пересечение (умножение) классов.
Общей частью, или пересечением 2-х классов, называется класс тех элементов, которые содержатся в обоих данных множествах, т.е. это множество элементов общих обоим множествам. Пересечение обозначается А В или А в , -пустое множество.
Тождество подчинение перекрещивание
Соподчинение противоположность противоречие
Основные законы операций объединения и пересечения
1 .законы идемпотентности
А+А=А
А*А=А
Если мы к классу «дом» прибавим класс «дом», то поучим класс «дом», т.е. «домов» не станет в 2 раза больше и объем понятия «дом» останется прежним.
-
законы коммутативности.
А+В=В+А, А*В=В*А
Если мы к классу «растение» + класс «животное», то получим класс «организм». Тот же самый класс получим, если «животное»+ «растение».
-
законы ассоциативности.
(А+В)+С= А+(В+С)
(А*В)*С= А*(В*С)
-
законы дистрибутивности.
(А+В)*С= (А*С)+(В*С)
(А*В)+С=( А+С)*(В+С).
-
законы поглощения.
А+(А*В)=А
А*(А+В)=А
Доказательство этих законов осуществляется графическим методом.
Промежуточный результат изображен горизонтальной штриховкой. В первом законе поглощения он равен А*В, а во втором А+В. Конечный результат изображен вертикальной штриховкой; он равен классу А.
Вычитание классов.
Разностью множеств А и В называется множество тех элементов класса А, которые не являются элементами класса В. Разность обозначается А- В.
Могут встретиться следующие 5 случаев:
1 случай..Класс А включает в себя класс В. Тогда разностью А- В будет заштрихованная часть А, т.е. множество тех элементов, которые не суть В. Пример, если мы из множества звуков русского языка (А) вычитаем множество гласных звуков (В), то получим множество согласных звуков.
2 сл. разностью 2-х перекрещивающихся классов будет заштрихованная часть А. например, разность множеств «рабочий» (А) и «рационализатор» (В) даст множество рабочих, которые не являются рационализаторами.
3 сл. если класс А полностью включен в класс В и класс В включен в класс А, то эти классы равны (тождественны). Тогда разность А- В даст пустой, или нулевой класс, т.е. класс в котором нет ни одного элемента. Например, если мы из класса «сосна» вычитаем класс «сосна», то разностью А- В равна пустому классу.
4. класс А и класс В не имеют общих элементов. Тогда разность А- В = А, т.к.всякий элемент класса А не является элементом класса В. Например, разность класса « стол» (А) и класса «стул» (В) равна классу «стол» (А)
-
если объем класса А меньше объема класса В, то в результате вычитания получим пустой класс, т.к. нет элементов класса А, которые не являются элементом класса В. Например, разность класса «личное местоимение» (А) и «местоимение» (В) дает пустой класс.
Законы. Дополнение к классу А.
Дополнением к классу А называется класс А, который будучи сложенным с А, дает рассматриваемую область предметов, а в пересечении с классом А дает , т.е. для которого А+ А=1 и А* А=0. откуда А=1- А, поэтому операцию дополнения к классу А можно рассматривать как частный случай операции «вычитания». Если от класса целых чисел (1) отнять класс четных чисел (А), то мы получим класс нечетных чисел (т.е. А 1, поскольку всякое целое число четное или нечетное и нет таких четных чисел, которые были бы нечетными). Заштрихованная часть на рисунке обозначает дополнение к А, т.е. А.
Определение понятий, его структура, виды, правила и возможные ошибки
Значение определений в познании. ( примеры, задания)
Определение (или дефиниция) понятия есть логическая операция, которая раскрывает содержание понятия либо устанавливает значение термина.
С помощью определения понятий мы в явной форме указываем на сущность отражаемых в понятии предметов, раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других так, например, давая определение понятия «трапеция», мы отличаем его от других четырехугольников, например от прямоугольника или ромба. «Трапеция»-четырехугольник, у которого 2 стороны параллельны, а 2 другие- не параллельны.
РЕАЛЬНЫЕ И НОМИНАЛЬНЫЕ ОПРЕДЕЛЕНИЯ
Если определяется предмет, то определение будет реальным. Если определяется термин, обозначающий предмет, то определение будет номинальным. С помощью номинальных определений вводятся также новые термины, краткие имена взамен более сложных описаний предметов. Например, «навыком называют такое действие, в составе которого отдельные операции стали автоматизированными в результате упражнений».
Путем номинальных определение вводятся и знаки, заменяющие термины. Например, «конъюнкция обозначается знаками или &», «тангенс угла обозначается как ...» и т. д.
Определения делятся на явные и неявные. Явные определения- это такие, в которых даны и и между ними устанавливается некоторое отношение равенства, эквивалентности, где -определяемое понятие, т. е. понятие, посредством которого оно определяется. Самое распространенное явное определение- определение через ближайший род и видовое отличие. В нем устанавливаются существенные признаки определяемого предмета.
Пример.«Правильный многоугольник- многоугольник, у которого все стороны конгруэнтны и все углы равны».Признак, указывающий на тот круг предметов, из числа которых нужно выделить множество предметов, называется родовым признаком или родом.
В приведенном примере родовым является понятие «многоугольник».
Признаки, при помощи которых выделяется определенное множество предметов из числа предметов, соответствующих родовому понятию, называется видовым отличием. При определении понятия видовых признаков (отличий) может быть 1 или несколько.
ПРАВИЛА ЯВНОГО ОПРЕДЕЛЕНИЯ. ОШИБКИ ВОЗМОЖНЫЕ.
1. Определение должно быть соразмерным, т.е. объем определяющего понятия должен быть равен объему определяемого понятия. . Это правило часто нарушается, в результате чего возникают логические ошибки в определении. Типы логических ошибок:
а) Широкое определение, когда . Пример, «лошадь- млекопитающее и позвоночное животное».
б) Узкое определение, когда . Н-р, «совесть- это осознание человеком ответственности перед самим собой за свои поступки»
в) Определение в одном отношении широкое, в другом- узкое. . и . Например, «бочка- сосуд для хранения жидкостей». С одной стороны, это широкое определение, т.к. сосудом для хранения жидкостей может быть чайник, ведро и т.д.; с другой стороны, это узкое определение, т.к. бочка пригодна для хранения и твердых тел, а не только жидкостей.
2. Определение не должно содержать круга. Круг возникает тогда, когда определяется через , а был определен через . Такие определения носят название тавтологий. Например, «закон есть закон», «масляное масло», «трудоемкий труд», «заданная задача», «поиграем в игру».
3. Определение должно быть четким, ясным. Это правило означает, что смысл и объем понятий, входящих в, должны быть свободными от двусмысленности; не допускается подмена их метафорами, сравнениями и т.д.
Неявные определения. В отличии от явных определений, имеющих структуру , в неявных определениях место занимает контекст, или набор аксиом, или описание способа настроения определяемого объекта.
Контекстуальное определение позволяет выяснить содержание незнакомого слова, выражающего понятие через контекст, не прибегая к словарю для перевода, если текст дан на иностранном языке.
Значения неизвестных в уравнениях даны в неявном виде. Если дано уравнение первой степени, например 10-y=3, или дано квадратное уравнение, например, x-7x+12=0, то решая их и находя значение корней этих уравнений, мы даем явное определение для y(y=7) и для x(x=4 и x=3).
Индуктивные определения характеризуются тем, что определяемый термин используется в выражений понятия, которое ему приписывается в качестве его смысла . примером индуктивного определения является определение понятия «натуральное число» с использованием самого термина «натуральное число»:
-
1- натуральное число 3.если н- натуральное число, то н=1 – натуральное число.
-
никаких натуральных чисел, кроме указанных в пунктах 1 и 2 нет.
С помощью этого индуктивного определения получается натуральный ряд чисел: 1, 2,3,4 … таков алгоритм построения ряда натуральных чисел.
Итак, определение понятия можно сформулировать после всестороннего изучения предмета. Необходимо изучение предмета не в статике, а в динамике, в развитии.
Уточнение понятий, правильное раскрытие их содержания и объема имеет важное значение не только в создании научной терминологии, но и ри уточнении смысла слов в рассуждении.
Роль определений понятия в науке связана с тем, что определения являются существенным моментом в познании мира.
Суждение как форма мышления. Суждение и предложение. Логика вопросов и ответов