28766-1 (630386)
Текст из файла
Лекции по информатике
Введение в проблему искусственного интеллекта (ИИ)
-
Понятие систем ИИ, их классификация области применения и перспективы развития.
-
Использование систем ИИ в организационном управлении.
1. Понятие систем ИИ, их классификация области применения и перспективы развития.
ИИ - это научно-исследовательское направление создающие модели и соответствующие программные средства, позволяющие с помощью ЭВМ решать задачи творческого, не вычислительного характера, которые в процессе решения требуют обращения к семантике (проблеме смысла). Исследования в области ИИ проводятся в течение 30 лет.
Началом работ в области ИИ считают создание ЭВМ, которая должна была имитировать процесс человеческого мышления. Разработка Розенблата. Машина-персептрон имела два вида нейтронов, которые образовывали нейтронную сеь.
Исследования в области ИИ разделились на два подхода:
1)Конекционистский
2)Символьный
Начало работ в (2) считают разработки университета Корнеги Меллона, а именно два программных комплекса:
а)логик-теорик;
б)общий решатель задач.
В конце 60-х изменилась методология решения задач ИИ, т.е. вместо моделирования способов мышления человека началась разработка программ способных решать человеческие задачи, но на базе Эффективных машинно-ориентированных методов.
Исследовательским полигоном этого периода явились головоломки и игры. Это объясняется замкнутостью пространства поиска решений и возможностью моделирования очень сложной стратегии поиска решения. В то же время делаются попытки перенести ИИ из искусственной среды в реальную. Возникает проблема моделирования внешнего мира. Это привело к появлению интегральных роботов, которые изначально должны были выполнять определенные операции в технологических процессах, работать в опасных для человека средах. С появлением роботов большое внимание уделяется реализации функции формирования действий, восприятие ими информации о внешней среде. Появление роботов считают вторым этапом исследований в ИИ.
В начале 70-х акценты в ИИ сместились на создание человеко-машинных систем, позволяющих комплексно на основе эвристических методов вырабатывать решения в рамках конкретных предметных областей на основе символьного подхода. В это же время стали развиваться бурными темпами экспертные системы (ЭС). ЭС - позволяет выявлять, накапливать и корректировать знания из различных областей и на основе этих знаний формировать решения , которые считаются если не оптимальными, то достаточно эффективными в определенных ситуациях.
ЭС используют знания группы экспертов в рамках определенной предметной области. В качестве экспертов используются конкретные специалисты, которые могут быть не достаточно знакомы с ЭВМ. В настоящее время в общем объеме доля ЭС составляет до 90%. Если проранжировать области применения по количеству созданных образцов:
-
Медицинская диагностика, обучение, консультирование.
-
Проектирование ЭС.
-
Оказание помощи пользователям по решению задач в разных областях.
-
Автоматическое программирование. Проверка и анализ качества ПО.
-
Проектирование сверхбольших интегральных схем.
-
Техническая диагностика и выработка рекомендаций по ремонту оборудования.
-
Планирование в различных предметных областях и анализ данных, в том числе и на основе статистических методов. Интерпретация геологических данных и выработка рекомендаций по обнаружению полезных ископаемых.
Первые образцы ЭС занимали по трудоемкости разработки 20-30 человеко/лет. В коллектив разработчиков входили: эксперты предметной области, инженеры по знаниям или проектировщики ЭС, программисты. В проектировании ЭС есть существенное отличие от проектирования традиционных информационных систем. Это объясняется тем, что в ЭС используется понятие “знание”, а в традиционной системе - “данные”. В ЭС отсутствует понятие жесткого алгоритма, а всевозможные действия задаются в виде правил, которые являются эвристиками, т.е. эмпирическими правилами или упрощениями. В процессе работы системы производится построение динамического плана решения задачи с помощью специального аппарата логического вывода понятий.
С появлением ЭС появилась новая научная дисциплина - инженерия знаний, которая занимается исследованиями в области представления и формализации знаний, их обработки и использования в ЭС. В настоящее время под термин ЭС попадает очень большой круг систем, которые можно отнести к ЭС только по используемым моделям и методам проектирования. Поэтому делается попытка более строгой классификации систем ИИ символьного направления.
В настоящее время при широком использовании символьного подхода усилилось внимание к использованию нейтронных сетей. Это объясняется тем, что предложены очень мощные модели нейтронных сетей и алгоритмы их обучения (метод обратного распространения ошибок).
Нейтронные сети используются в медицинской диагностике, управлении самолетом, налоговых и почтовых службах США.
Одной из составляющих успеха нейтронных сетей явилась совместная разработка компании Intel и корпорации Nestor микросхемы с архитектурой нейтронных сетей.
Тенденции развития средств вычислительной техники:
-
Развитие вычислительной базы: параллельные, нейтронные и оптические технологии, которые будут способны к распределенному представлению информации, параллельной ее обработки, обучению и самоорганизации.
-
Развитие теоретической основы для информационной обработки основанный на понятии ‘Softlogic’, поддерживающий как логический, так и интуитивный вывод понятий.
-
Разработка для реальных приложений системы когнетивных функций, таких как речь, звуковые эффекты, когнетивная графика и т.п.
ЭС как разновидность систем ИИ.
-
Структура ЭС.
-
Определение знаний и базы знаний (БЗ).
-
Определение понятий логического вывода.
-
Организация интерфейса с пользователем в ЭС.
1. Структура ЭС.
2. Определение знаний и базы знаний (БЗ).
Основным элементом БЗ являются знания о предметной области, в которой должна функционировать ЭС.
Знание - это совокупность сведений, образующих целостное описание соответствующее определенному уровню осведомленности об описываемой проблеме.
Основное отличие знаний от данных в том, что данные описывают лишь конкретное состояние объектов или группы объектов в текущий момент времени, а знания кроме данных содержат сведения о том как оперировать этими данными.
В БЗ ЭС знания должны быть обязательно структурированы и описаны терминами одной из модели знаний. Выбор модели знаний - это наиболее сложный вопрос в проектировании ЭС, так как формальное описание знаний оказывает существенное влияние на конечные характеристики и свойства ЭС.
В рамках одной БЗ все знания должны быть однородно описаны и простыми для понимания. Однородность описания диктуется тем, что в рамках ЭС должна быть разработана единая процедура логического вывода, которая манипулирует знаниями на основе стандартных типовых подходов. Простота понимания определяется необходимостью постоянных контактов с экспертами предметной области, которые не обладают достаточными знаниями в компьютерной технике.
Знания подразделяются с точки зрения семантики на факты и эвристики. Факты как правило указывают на устоявшиеся в рамках предметной области обстоятельства, а эвристики основываются на интуиции и опыте экспертов предметной области.
По степени обобщенности описания знания подразделяются на:
-
Поверхностные - описывают совокупности причинно- следственных отношений между отдельными понятиями предметной области.
-
Глубинные - относят абстракции, аналогии, образцы, которые отображают глубину понимания всех процессов происходящих в предметной области.
Введение в базу глубинных представлений позволяет сделать систему более гибкой и адаптивной, так как глубинные знания являются результатом обобщения проектировщиком или экспертом первичных примитивных понятий.
По степени отражения явлений знания подразделяются на:
-
Жесткие - позволяют получить однозначные четкие рекомендации при задании начальных условий.
-
Мягкие - допускают множественные расплывчатые решения и многовариантные рекомендации.
Тенденции развития ЭС.
М,Ж - мягкие, жесткие знания.
П,Г - поверхностные, глубинные знания.
-
медицина, управление
-
психодиагностика, планирование
-
диагностика неисправностей разного вида
-
проектирование различных видов устройств
Обычно при проектировании БЗ проектировщик старается пользоваться стандартной моделью знаний (МЗ):
-
продукционная модель знаний (системы продукции)
-
логическая МЗ
-
фреймовая МЗ
-
реляционная МЗ
По форме описания знания подразделяются на:
-
Декларативные (факты) - это знания вида “А есть А”.
-
Процедурные - это знания вида “Если А, то В”.
Декларативные знания подразделяются на объекты, классы объектов и отношения.
Объект - это факт, который задается своим значением.
Класс объектов - это имя, под которым объединяется конкретная совокупность объектов-фактов.
Отношения - определяют связи между классами объектов и отдельными объектами, возникшие в рамках предметной области.
К процедурным знаниям относят совокупности правил, которые показывают, как вывести новые отличительные особенности классов или отношения для объектов. В правилах используются все виды декларативных знаний, а также логические связки. При обработке правил следует отметить рекурсивность анализа отношений, т.е. одно правило вызывает глубинный поиск всех возможных вариантов объектов БЗ.
Граница между декларативными и процедурными знаниями очень подвижна, т.е. проектировщик может описать одно и то же как отношение или как правило.
Во всех видах моделей выделен еще один вид знаний - метазнания, т.е. знания о данных. Метазнания могут задавать способы использования знаний, свойства знаний и т.д., т.е. все, что необходимо для управления логическим выводом и обучением ЭС.
3. Определение понятий логического вывода.
Аппарат логического вывода предназначен для формирования новых понятий, т.е. решений в рамках определенной предметной области. Как правило логический вывод тесно связан с конкретной моделью знаний и оперирует терминологией этой модели. Есть несколько общих понятий для всех МЗ:
-
стратегия вывода
-
управляющая структура
В ЭС применяется стратегия вывода в виде прямой и обратной цепочек рассуждения. Прямая стратегия ведет от фактов к гипотезам, а обратная пытается найти данные для доказательства или опровержения гипотезы.
В современных ЭС применяются комбинированные стратегии, которые на одних этапах используют прямую, а на других обратную цепочки рассуждения.
Управляющая структура - это способ применения или активизации правил в процессе формирования решений. Управляющая структура полностью зависит от выбранной проектировщиком модели.
Например, для продукционной модели наиболее часто используются такие управляющие структуры:
-
последовательный перебор правил
-
одно подмножество правил применяется для выбора очередного правила
Независимо от формы управляющей структуры в процессе поиска решений в некоторых точках поиска возникает необходимость выбора последующего направления поиска. Используется два метода:
-
“сначала вглубь”
-
“сначала вширь”
Важной проблемой, которая требует обязательного решения в рамках аппарата логического вывода, является подтверждение или оценка достоверности формируемых системой частичных или общих решений. Трудность заключается в том, что ЭС как правило, работают с нечеткими, часто неопределенными понятиями, которые должны быть строго оценены и иметь четкую форму выражения.
Термин “нечеткость” в ЭС недостаточно определен ив инженерии знаний используется такая классификация нечеткости:
-
недетерминированность вывода
-
многозначность
-
ненадежность знаний
-
неполнота
-
неточность
-
Под недетерминированностью вывода подразумевается возможность формирования плана решения задачи из определенных правил методом проб и ошибок, с возвратами при необходимости для построения других, более эффективных планов. С целью ускорения поиска эффективного плана в систему вводят оценочные функции разного вид, а также эвристические значения экспертов.
-
Многозначность интерпретации знаний в процессе выработки решений устраняется за счет включения в систему более широкого контекста и семантических ограничений.
Метод семантических ограничений называется методом релаксации. Суть его в том, что с помощью циклических операций применяются локальные ограничения, которые согласовываются между собой на верхнем уровне.
-
Ненадежность. Для устранения ненадежности знаний, которая довольно часто используется в ЭС, используются методы основанные на нечеткой логике: расчет коэффициентов уверенности, метод Байеса и т.д. Нечеткая логика - разновидность непрерывной логики, в которой логические формулы могут принимать значения не только 0 или 1, но и все дробные значения между 0 и 1 для указания частичной истины. Наиболее слабое место в нечеткой логике - это реализация функции принадлежности, т.е. присваивание предпосылкам весовых значений экспертами (зависит от конкретного человека).
Если tx и ty значения истинности предпосылок правил x и y, тогда при использовании логических связок “и/или” истинное значение предпосылки определяется следующим образом:
- при связи “и” - tпредпосылки =min{tx,ty}
- при связи “или” - tпредпосылки =max{tx,ty}
Если в общем случае tправила есть истинное значение, приписываемое правилу, то тогда tправила определяется:
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.














