25023-1 (630370)

Файл №630370 25023-1 (Лекции по количественной оценке информации)25023-1 (630370)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

КОЛИЧЕСТВЕННАЯ ОЦЕНКА ИНФОРМАЦИИ

Общее число неповторяющихся сообщений, которое может быть составлено из алфавита m путем комбинирования по n символов в сообщении,

. (1)

Неопределенность, приходящаяся на символ первичного (кодируемого)1 алфавита, составленного из равновероятностных и взаимонезависимых символов,

. (2)

Основание логарифма влияет лишь на удобство вычисления. В случае оценки энтропии:

а) в двоичных единицах

б) в десятичных единицах

где ;

в) в натуральных единицах

где

Так как информация есть неопределенность, снимаемая при получении сообщения, то количество информации может быть представлено как произведение общего числа сообщений к на среднюю энтропию Н, приходящуюся на одно сообщение:

(3)

Для случаев равновероятностных и взаимонензависимых символов первичного алфавита количество информации в к сообщениях алфавита m равно

а количество информации в сообщении, составленном из к неравновероятностных символов,

(5)

Для неравновероятностных алфавитов энтропия на символ алфавита

(4)

При решении задач, в которых энтропия вычисляется как сумма произведений вероятностей на их логарифм, независимо от того, являются ли они безусловными , условными или вероятностями совместных событий .

Количество информации определяется исключительно характеристиками первичного алфавита, объем – характеристиками вторичного алфавита. Объем2 информации

(6)

где lср – средняя длина кодовых слов вторичного алфавита. Для равномерных кодов (все комбинации кода содержат одинаковое количество разрядов)

где n – длина кода (число элементарных посылок в коде). Согласно (3), объем равен количеству информации, если lср=Н, т.е. в случае максимальной информационной нагрузки на символ сообщения. Во всех остальных случаях .

Например, если кодировать в коде Бодо некоторые равновероятный алфавит, состоящий из 32 символов, то

Если закодировать в коде Бодо русский 32-буквенный алфавит, то без учета корреляции между буквами количество информации

т.е. если в коде существует избыточность и , то объем в битах всегда больше количества информации в тех же единицах.

Тема 2. Условная энтропия и энтропия объединения

Понятие условной энтропии в теории информации используется при определении взаимозависимости3 между символами кодируемого алфавита, для определения потерь при передаче информации по каналам связи, при вычислении энтропии объединения.

Во всех случаях при вычислении условной энтропии в том или ином виде используются условные вероятности.

Если при передаче n сообщений символ А появился m раз, символ В появился l раз, а символ А вместе с символом Вк раз, то вероятность появления символа А ; вероятность появления символа В ; вероятность совместного появления символов А и В ; условная вероятность появления символа А относительно символа В и условная вероятность появления символа В относительно символа А

(7)

Если известна условная вероятность, то можно легко определить и вероятность совместного появления символов А и В, используя выражения (7)

(8)

От классического выражения (4) формула условной энтропии отличается тем, что в ней вероятности – условные:

(9)

(10)

где индекс i выбран для характеристики произвольного состояния источника сообщения А, индекс j выбран для характеристики произвольного состояния адресата В.

Различают понятия частной и общей условной энтропии. Выражение (9) и (10) представляют собой частные условные энтропии.

Общая условная энтропия сообщения В относительно сообщения А характеризует количество информации, содержащейся в любом символе алфавита, и определяется усреднением по всем символам, т. е. по всем состояниям с учетом вероятности появления каждого из состояний, и равна сумме вероятностей появления символов алфавита на неопределенность, которая остается после того, как адресат принял сигнал

(11)

Выражение (11) является общим выражением для определения количества информации на один символ сообщения для случая неравномерных и взаимонезависимых символов.

Так как представляет собой вероятность совместного появления двух событий , то формула (11) можно записать следующим образом:

(12)

Понятие общей и частной условной энтропии широко используется при вычислении информационных потерь в каналах связи с шумами.

В общем случае, если мы передаем m сигналов А и ожидаем получить m сигналов В, влияние помех в канале связи полностью описывается канальной матрицей, которую мы приводим ниже:

В

А

b1 b2 … bj … bm

а1

а2

аi

аm

…………………………………………………………..

……………………………………………………………

Вероятности, которые расположены по диагонали, определяют правильный прем, остальные – ложный. Значение цифр, заполняющих колонки канальной матрицы, обычно уменьшаются по мере удаления от главной диагонали и при полном отсутствии помех всех, кроме цифр, расположенных на главной диагонали, равны нулю.

Если описывать канал связи со стороны источника сообщений, то прохождение данного вида сигнала в данном канале связи описывается распределением условных вероятностей вида , так для сигнала распределением вида

(13)

(14)

(15)

(16)

В

А

b1 b2 … bj … bm

а1

а2

аi

аm

…………………………………………………………..

……………………………………………………………

(17)

(18)

(19)

тема 3. Вычисление информационных потерь при передаче сообщений по каналам связи с шумами

Потери информации в каналах связи с шумами обычно описывают при помощи условной энтропии и энтропии объединения.

Если помех нет или их уровень настолько низок, что они не в состоянии уничтожить сигнал или имитировать полезный сигнал в отсутствие передачи, то при передаче мы будем твердо уверены, что получим - сигнал, соответствующий переданному ai-му сигналу. События А и В статистически жестко связаны, условная вероятность максимальна , а условная энтропия

!!!!1

так как !!!!. В этом случаи количество информации, содержащейся в принятом ансамбле сообщений В, равно энтропии передаваемых сообщений ансамбля А, т.е. I(В, А) = Н (А).

При высоком уровне помех любой из принятых сигналов bj может соответствовать любому принятому сигналу ai, статистическая связь между переданными и принятыми сигналами отсутствует. В этом случае вероятности!!!!!! Есть вероятности независимых событий и !!!!!!

!!!!1

так как !!11, т.е. условная энтропия равна безусловной, а количество информации, содержащейся в В, относительно А равно нулю:

!!!!

Информационные характеристики реальных каналов связи лежат между этими двумя предельными случаями. При этом потери информации при передаче !! символов по данному каналу связи

!!!!!

Несмотря на то, что часть информации поражается помехами, между принятыми и переданными сообщениями существует статистическая зависимость. Это позволяет описывать информационные характеристики реальных каналов связи при помощи энтропии объединения статистически зависимых событий. Так как

!!!!1

то потери в канале связи могут быть учтены при помощи энтропии объединения следующим образом:

!!1!

а с использованием условной энтропии

!!!

Для вычисления среднего количества информации, содержащегося в принятом ансамбле сообщений В относительно передаваемого ансамбля сообщений А в условиях действия помех, пользуются следующими выражениями, выведенными непосредственно из выражения (25):

!!!!!!!!

Для вычисления часто удобно применять выражения (26-28) в виде

!!!!!!!

Для полного и всестороннего описания канала связи необходимо задать: канальную матрицу вида !!!!!! и безусловные вероятности вида !!!! или канальную матрицу вида !!!!!! и безусловные вероятности вида !!!!!. В последнем случае сумма значений матрицы по столбцам дает безусловные вероятности вида !!!!!!!!!!, а сумма по строкам дает безусловные вероятности вида !!!!!!. Условные вероятности могут быть найденными из выражений:

!!!!!!!

Зная условные и безусловные вероятности, можно найти Н (А), Н(В), Н(А/В) и Н(В/А).

Если уровень помех настолько высок, что с равной вероятностью можно ожидать переход любого символа источника сообщения в произвольный символ первичного алфавита,. то энтропия канала связи будет равна !!!!!, а количество информации !!!!!!!, при этом значение I может быть отрицательной величиной, что означает, что канал связи вносит дезинформацию.

ТЕМА 5. ОПРЕДЕЛЕНИЕ ИЗБЫТОЧНОСТИ СООБЩЕНИЙ. ОПТИМАЛЬНОЕ КОДИРОВАНИЕ

Характеристики

Тип файла
Документ
Размер
5,15 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее