30406-1 (630152), страница 16
Текст из файла (страница 16)
При периодическом контроле состояния изоляции не исключаются аварийные повреждения. Надежность электроснабжения повышается при непрерывном (постоянном) контроле изоляции, т. е. измерении сопротивления изоляции под рабочим напряжением в течении всего времени работы электроустановки без автоматического отключения. Отсчет величины сопротивления изоляции производится по шкале прибора. При снижении сопротивления изоляции до предельно допустимого значения или ниже прибор подает звуковой или световой сигнал (или оба сигнала).
Схемы контроля изоляции можно разделить на:
1) схемы, работающие на токах нулевой последовательности; при этом токи нулевой последовательности, возникающие в неравных сопротивлениях отдельных фаз относительно земли, выделяются при помощи ассиметров А или при помощи специальных трансформаторов тока нулевой последовательности.
2) схемы, работающие на выпрямленных токах контролирующей сети, например, вентильные схемы (три вентиля подключены к фазам сети)
3) схемы работающие на постоянном (выпрямленном) токе постороннего источника.
4) схемы, работающие на токах постороннего источника с частотой, отличной от промышленной.
5) комбинированные схемы.
Кроме того с целью повышения электробезопасности установок применяются схемы и приборы контроля и защиты от замыкания на землю, действующие на сигнал.
Такая защита реагирует на: а) напряжение фаз относительно земли, например: схема трех вольтметров; б) напряжение нулевой последовательности, например: в сетях с заземленной нейтралью, при этом датчиком служит трансформатор тока нулевой последовательности.
202. Обеспечение недоступности токоведущих частей.
Прикосновение к токоведущим частям всегда опасно, а при напряжении выше 1000 В опасно приближение к токоведущим частям. Изоляция проводов достаточно защищает при напряжениях до 1000 В, при больших напряжениях опасно прикосновение и к изолированному проводу, т. к. повреждение изоляции бывает незаметно, если он подвешен на изоляторах.
Чтобы исключить прикосновение или приближение к токоведущим частям обеспечивается недоступность их посредством:
1) ограждения,
2) блокировок,
3) расположение токоведущих частей на недоступном месте или на недоступной высоте.
1. Ограждения применяются сплошные или сетчатые.
Первые применяются при напряжениях до 1000 В, в виде кожухов и крышек, укрепленных на шарнирах запирающихся на замок или запор, открывающийся специальным ключом.
Сетчатые ограждения (с размером ячеек 25х25 мм имеют двери закрывающиеся на замок.
2. Блокировки применяются в электроустановках с ограждаемыми токоведущими частями, а также в различных электроаппаратах, пускателях и т. п. , работающих в условиях с повышенными требованиями безопасности (шахты, суда).
Электрические блокировки осуществляют разрыв цепи управления (магнитного пускателя и т. п. ) специальными контактами установленными на дверях ограждений, крышках и дверцах кожухов, таким образом, чтобы при незначительном открывании дверей (крышек) контакты срабатывали.
Механическая блокировка применяется в электрических аппаратах, пускателях, рубильниках.
Расположение токоведущих частей на недоступной высоте или недоступном месте должно обеспечить безопасность работ без ограждений, при этом должна учитываться возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках.
203. Защитное отключение.
Защитное отключение - система защиты, обеспечивающая безопасность путем автоматического отключения электроустановки за время 0, 03-0, 1 сек. при возникновении аварийной ситуации, вызывающей опасность поражения электрическим током.
Повреждение электроустановки приводит к изменениям некоторых величин, которые могут быть использованы как входные величины автоматического защитного устройства. Значение входной величины, при котором срабатывает защитное устройство, называется установкой 15, 30, 100, 300 мА.
В зависимости от того сто является входной величиной выделяются следующие схемы защитного отключения: на напряжении корпуса относительно земли, на токе замыкания на землю, на напряжение нулевой последовательности, на напряжение фазы относительно земли, на постоянном и переменном токе ( комбинированные ).
Наиболее желательно применение защитного отключения в передвижных электроустановках и для ручного электроинструмента, т. к. условия их эксплуатации затрудняют обеспечение безопасности применения заземления или других защитных мер.
Защитное отключение может быть применено как основная мера защиты с дополнительным защитным заземлением или занулением, а также как дополнительная мера к ним, кроме того защитное отключение может быть единственной мерой защиты "вместо заземления", в этом случае обязателен самоконтроль защитного отключения.
При применении защитного отключения безопасность обеспечивается быстродействием ее, т. е. отключением аварийного участка или сети в целом при однофазном замыкании на землю или на элементы оборудования, нормально изолированные от земли, а также при прикосновении человека к частям находящимся под напряжением.
204. Защитное заземление и выравнивание потенциалов, зануление.
В ЭУ переменного и постоянного тока защитное заземление и зануление обеспечивают защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
Защитное заземление - это заземление металлических частей нормально не находящихся под напряжением электроустановки с целью обеспечения электробезопасности.
Зануление - это преднамеренное соединение частей ЭУ, нормально не находящихся напряжением, с глухозаземленной нейтралью генератора , трансформатора в сетях 3-х фазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
Защитному заземлению и занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты.
Так корпуса электрических машин , трансформаторов, светильников и др. нетоковедущие части могут оказаться под напряжением при замыкании на корпус. Если корпус не заземлен, то прикосновение к нему также опасно, как и прикосновение к фазе.
При заземлении корпуса ток через тело человека при его прикосновении к корпусу будет тем меньше, сем меньше ток замыкания на землю и сопротивление цепи заземления и чем ближе человек стоит к заземлителю.
Защитное заземление представляет собой заземляющее устройство. Заземляющее устройство - это совокупность проводников к заземлителю.
Заземлитель - это проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей. В качестве заземлителя в первую очередь необходимо использовать естественные заземлители (железобетонные фундаменты). В качестве искусственных заземлителей применяют стальные стержни ( 68) из уголка.
В сетях напряжением выше 1000 В прикосновение к фазе опасно, а применение разделительных трансформаторов значительно повышает стоимость электроустановок. Поэтому в таких сетях применяют другие защитные меры.
Целью разделения сетей является уменьшение тока замыкания на землю за счет высокого сопротивления изоляции фаз относительно земли, поэтому не допускается заземление нейтрали или обратного провода за разделительным трансформатором или преобразователем.
205. Применение разделительных трансформаторов.
Электрическое разделение сетей - это разделение электрической сети на отдельный электрически не связанные между собой участки с помощью разделительных трансформаторов.
При большой протяженности и разветвленности электрической сети она имеет большую емкость и небольшое сопротивление исправной изоляции фаз. Вследствие этого могут возникнуть большие токи замыкания на землю и повышается опасность при прикосновении человека к фазе. Для снижения этой опасности электрическую сеть разделяют на несколько небольших сетей такого же напряжения. Такие сети обладают небольшой емкостью и высоким сопротивлением фаз.
Более эффективным является разделение сетей напряжением до 1000 В. Для этой цели применяют разделительные трансформаторы, от которых питаются отдельные, чаще передвижные или переносные потребители (электроинструменты). Также для разделения сетей применяются преобразователи частоты и выпрямительные установки, которые не должны иметь электрической связи с питающей их сетью.
В сетях напряжением выше 1000 В прикосновение к фазе опасно, а применение разделительных трансформаторов значительно повышает стоимость электроустановок, поэтому в таких сетях применяют другие защитные меры.
Целью разделения сетей является уменьшение тока замыкания на землю за счет высокого сопротивления изоляции фаз относительно земли, поэтому не допускается заземление нейтрали или обратного провода за разделительным трансформатором или преобразователем.
206. Защита от опасности при переходе напряжения с высокой стороны на низкую.
Повреждение изоляции в трансформаторе может привести к замыканию между обмотками разных напряжений. В этом случае на сеть низкого напряжения накладывается более высокое напряжение на которое эта сеть не рассчитана. При переходе напряжения 6 или 10 кВ на сторону до 1000 В, на низкое напряжение накладывается фазное напряжение более 3000 В ( при 6 кВ - 3460 В).
При заземлении нейтрали ( 73) и применении нулевого провода происходит замыкание на землю и напряжения замыкания относительно земли не превысит линейного напряжения низкой стороны. При невозможности заземления нейтрали применяются - пробивной предохранитель ( 74) два электрода разделенные слюдяной прокладкой с отверстиями, который включается между нейтралью ( а при соединении в треугольник между фазой) и землей.
Этот предохранитель срабатывает ( воздушные промежутки пробиваются и электроды замыкаются) при напряжении выше 3000 В при высшем напряжении ниже 1000 В применяются как мера защиты заземления вторичных обмоток понизительных ламп (лучше средней точки обмотки) или применяются заземляемые экраны или экранные обмотки, размещенные между первичной и вторичной обмотками трансформатора.
207. Компенсация емкостной составляющей тока замыкания на землю. Применение низких напряжений.
В сетях с изолированной нейтралью при их емкости более 0, 3мкФ и сопротивлением изоляции 50 кОм на фазу, дальнейшее увеличение сопротивления изоляции не снижает ни тока замыкания на землю, ни тока через человека, т. к. в указанном случае величина тока замыкания на землю определяется емкостью между фазами и землей.
Известно, что снижение тока замыкания на землю приводит к снижению напряжений прикосновения и шага. Уменьшить ток замыкания в таких сетях можно за счет снижения емкостной составляющей тока замыкания на землю, что достигается включением индуктивности ( компенсирующей или дугогасящей катушки ) между нейтралью и землей. При точной настройке в резонанс компенсирующей катушки индуктивная составляющая компенсирует емкостную и ток замыкания на землю соответствует активному сопротивлению изоляции фаз увеличенному на сопротивление обмотки компенсирующей катушки.
Компенсация емкостной составляющей применяется обычно в сетях напряжением выше 1000 В при токах замыкания на землю от 5 А и выше регламентируется ПУЭ в зависимости от напряжения - 10 А - 35 кВ, 30 А - 6кВ.
В сетях напряжением до 1000 В компенсация емкостной составляющей тока замыкания на землю осуществляется в подземных сетях рудников и шахт.
Применение низких напряжений не более 42 В. Наибольшая степень безопасности достигается при напряжениях 6-10 В, т. к. в этом случае ток через человека минимальный. Но такое напряжение применяется редко (шахтерские лампы - 2, 5 В, детские игрушки - 4, 5 В, бытовые фонари ).
Чаще в производственных условиях применяется напряжение 12 и 36 В. Неудобством применения малого напряжения в силовых сетях является: необходимость уменьшения протяженности этих сетей, т. е. применения отдельного источника для групп или одного потребителя (большой ток); поэтому такое напряжение применяется для электрофицированного инструмента, ручных и станочных ламп.
Для получения низкого напряжения запрещается применение автотрансформаторов, а только аккумуляторы, трансформаторы. Причем вторичная обмотка заземляется (зануляется).
При напряжении 12 и 36 В возможно прохождение через тело человека тока, превышающего значение порога неотпускания, поэтому принимаются дополнительные меры защиты; двойная изоляция от случайных прикосновений и др.
208. Классификация электрозащитных средств.
При эксплуатации ЭУ важную роль в обеспечении безопасности электротехнического персонала играют электротехнические средства защиты и предохранительные приспособления.