183950 (629983), страница 2

Файл №629983 183950 (Моделювання оптимального розподілу інвестицій за допомогою динамічного програмування) 2 страница183950 (629983) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рисунок 1.2 – Етапи процесу прийняття управлінських рішень з урахуванням фактору часу

Другий етап процесу прийняття рішень – це накопичення інформації з проблеми, а саме збирання відомостей щодо проблеми, яка вирішується. На третьому етапі при опрацюванні альтернатив потрібно враховувати такі вимоги як взаємовиключність альтернатив та забезпечення однакових умов описування альтернатив. Для виконання четвертого етапу – оцінки альтернатив, необхідно відповісти на наступні питання:

– Чи є альтернатива реалістичною?

– Чи відповідає альтернатива можливостям організації?

– Чи є прийнятними наслідки реалізації альтернативи?

Тепер, коли описані всі етапи процесу прийняття рішень, слід визначити саме поняття прийняття рішення: прийняття рішення – це порівняння альтернатив за очікуваними ефектами їх реалізації на закладі критеріїв етапу діагнозу проблеми і прийняття остаточного рішення.

Кінцевим результатом задачі прийняття рішень з урахуванням фактору часу являється рішення. Із змістовної точки зору рішенням може бути курс дії, спосіб дії, план роботи, варіант проекту тощо. Рішення являється одним з видів розумової діяльності і волевиявлення людини.

Слід зазначити, що не кожен метод може застосовуватись в будь-якій ситуації. Тобто кожне рішення або кожна задача прийняття рішення з урахуванням фактору часу може вирішуватися в різних умовах. Для визначення цих умов слід провести класифікацію задач прийняття рішень за різними ознаками (ступінь визначеності інформації, зміст рішень, направленість рішень тощо), серед яких найбільше цікавить ступінь визначеності інформації – ступінь повноти і достовірності даних, необхідних для прийняття рішень. За ступенем повноти визначеності інформації задачі прийняття рішень класифікують на три групи:

– задачі в умовах визначеності;

– задачі в умовах імовірнісної визначеності;

– задачі в умовах невизначеності.

Отже, для кожної групи умов в практиці управління використовуються та чи інша методологія.

Прийняття рішень в умовах визначеності проводяться при наявності повної і достовірної інформації щодо проблемної ситуації, умов рішень і наслідках його реалізації. Для даного класу задач прийняття рішень немає необхідності довизначати проблемну ситуацію гіпотетичними ситуаціями. Цілі і обмеження формально визначаються у вигляді цільових функцій. Критерій вибору обирається у вигляді мінімуму або максимуму цільової функції. Наявність переліченої інформації дозволяє побудувати формальну математичну модель задачі прийняття рішень і здійснити знаходження оптимального рішення алгоритмічним шляхом без втручання людини. Для вирішення цього класу задач прийняття рішень застосовуються різні методи оптимізації, наприклад, методи математичного програмування: лінійного, нелінійного, динамічного.

Задачі прийняття рішень в умовах невизначеності безпосередньо пов’язані з управлінськими рішеннями. Для цих задач характерна більша неповнота і недостовірність інформації, різноманіття і складність впливу різних факторів соціального, економічного, політичного та іншого характеру. Ці обставини не дозволяють, по крайній мірі в теперішній час, побудувати адекватні математичні моделі вирішення задач по визначенню оптимального рішення. Тому активну роль в пошуку оптимального або сприятливого рішення виконує людина.

Математичні моделі, що розглядаються в задачах прийняття рішень в умовах визначеності та імовірнісної визначеності, описують найпростіші ситуації, характерні для функціонування технічних систем. Тому задачі даного класу широко застосовуються для синтезу управління в автоматичних системах і мають дуже посереднє відношення до задач прийняття управлінських рішень в організаційних системах.

Згідно зі схемою, котра зображена на рисунку 1.3, методи обґрунтування управлінських рішень підрозділяються на дві основні групи: кількісні та якісні методи. До якісних методів відносяться лише експертні методи, а решта методів (класифікація за ступенем визначеності) відноситься до кількісних. Аналітичні методи характеризуються тим, що встановлюють аналітичні (функціональні) залежності між умовами вирішення задач прийняття рішень та їх результатами.

Статистичні методи. Їх характерною рисою є врахування випадкових впливів та відхилень. Ці методи дозволяють отримувати з накопичуваної інформації, яка здається хаотичною, основні тенденції та закономірності. Ця група охоплює методи теорії ймовірностей та математичної статистики. Найбільш широко використовуються такі методи, як кореляційний аналіз, факторний аналіз, дисперсійний аналіз, методи статистичного контролю якості та надійності продукції.

Рисунок 1.3 – Схема методів обґрунтувань управлінських рішень

Методи математичного програмування. Застосовуються при рішенні умовних екстремальних задач з багатьма змінними.

Теоретико-ігрові методи та методи статистичних рішень. Теорія статистичних рішень використовується, коли невизначеність ситуації викликана об’єктивними обставинами, які або невідомі, або носять випадковий характер. Метод теорії ігор використовується в тих випадках, коли невизначеність ситуації викликана свідомими діями розумного противника.

1.4 Моделі динамічного програмування

Модель є образним представленням якогось об’єкту чи процесу і використовується для аналізу або вивчення цього об’єкту чи процесу.

Моделі математичного програмування – це так звані одноетапні моделі, які допомагають аналізувати статичні, не залежні від часу умови. Вони мають оптимальний розв’язок за умов стабільності господарського процесу, або на короткий проміжок у майбутньому.

Вперше математичні моделі були використані для рішення практичного завдання в 30-х роках у Великобританії при створенні системи протиповітряної оборони. Для розробки даної системи були залучені вчені різних спеціальностей. Система створювалася в умовах невизначеності щодо можливих дій супротивника, тому дослідження проводилися на адекватних математичних моделях. У цей час вперше був застосований термін: “операційне дослідження”, що припускало дослідження воєнної операції. У наступні роки операційні дослідження або дослідження операцій розвиваються як наука, результати якої застосовуються для вибору оптимальних рішень при керуванні реальними процесами й системами.

Можна виділити наступні основні етапи операційного дослідження:

  • спостереження явища й збір вихідних даних;

  • постановка задачі;

  • побудова математичної моделі;

  • розрахунок моделі;

  • тестування моделі й аналіз вихідних даних. Якщо отримані результати не задовольняють дослідника, то треба або повернутися на етап побудови математичної моделі, тобто запропонувати для рішення задачі іншу математичну модель; або повернутися на етап постановки задачі, тобто поставити задачу більш коректно;

  • застосування результатів досліджень.

Таким чином, операційне дослідження є ітераційним процесом, кожен наступний крок якого наближає дослідника до рішення стоячої перед ним проблеми. У центрі операційного дослідження знаходяться побудова й розрахунок математичної моделі.

Математична модель – це система математичних співвідношень, приблизно, в абстрактній формі описуючі досліджуваний процес або систему. Математична модель – абстракція реальної дійсності, в якій відношення між реальними елементами, а саме ті, що цікавлять дослідника, замінені відношенням між математичними категоріями. Економіко-математична модель – це математична модель, призначена для дослідження економічної проблеми.

Проведення операційного дослідження, побудова й розрахунок математичної моделі динамічного програмування дозволяють проаналізувати ситуацію й вибрати оптимальні рішення по керуванню нею або обґрунтувати запропоновані рішення. Застосування математичних моделей динамічного програмування необхідно в тих випадках, коли проблема складна, залежить від великої кількості факторів, що по-різному впливають на її рішення. У цьому випадку непродумане й науково не обґрунтоване рішення може привести до серйозних наслідків. Прикладів цьому в нашому житті є чимало, зокрема в економіці. Використання математичних моделей динамічного програмування дозволяє здійснити попередній вибір оптимальних або близьких до них варіантів рішень за певними критеріями. Вони науково обґрунтовані, і особа, що приймає рішення, може керуватися ними при виборі остаточного рішення. Варто розуміти, що не існує рішень, оптимальних “взагалі”. Будь-яке рішення, отримане при розрахунку математичної моделі динамічного програмування, оптимально по одному або декількох критеріях, запропонованим постановником завдання й дослідником. До речі, практика показує, що займатися операційними дослідженнями й побудовою математичних моделей динамічного програмування найкраще не “чистим” математикам, що не завжди представляють собі сутність досліджуваної проблеми й приділяють більшу увагу різним математичним особливостям побудови й розрахунку, і не предметникам, які не завжди можуть коректно поставити завдання. Гарні результати одержують фахівці, що знають предметну область і разом з тим володіючи математичними методами дослідження у динамічному програмуванні. У теперішній час математичні моделі динамічного програмування застосовуються для аналізу, прогнозування й вибору оптимальних рішень у різних галузях економіки. Це планування й оперативне керування виробництвом, управління трудовими ресурсами, управління запасами, розподіл ресурсів, планування й розміщення об’єктів, керівництво проектом, розподіл інвестицій і т.п.

Можна виділити наступні основні етапи побудови математичної моделі динамічного програмування.

а) Визначення мети, тобто чого хочуть домогтися, вирішуючи поставлене завдання.

б) Визначення параметрів моделі, тобто заздалегідь відомих фіксованих факторів, на значення яких дослідник не впливає.

в) Формування керуючих змінних, змінюючи значення яких можна наближатися до поставленої мети. Значення керуючих змінних є рішеннями задачі.

г) Визначення області припустимих рішень, тобто тих обмежень, котрим повинні задовольняти керуючі змінні.

д) Виявлення невідомих факторів, тобто величин, які можуть змінюватись випадковим або невизначеним чином.

е) Вираження мети через керуючі змінні, параметри й невідомі фактори, тобто формування цільової функції, котра називається також критерієм ефективності або критерієм оптимальності задачі.

Вводяться наступні умовні позначки: – параметри моделі; – керуючі змінні або рішення; – область припустимих рішень; – випадкові або невизначені фактори; – цільова функція або критерій ефективності (критерій оптимальності).

. (1.1)

У відповідність із введеними термінами математична модель задачі має наступний вигляд:

, (1.2)

Вирішити задачу – це значить знайти таке оптимальне рішення , щоб при даних фіксованих параметрах й з урахуванням невідомих факторів значення критерію ефективності було б по можливості максимальним (мінімальним).

. (1.3)

Таким чином, оптимальне рішення – це рішення, краще перед іншими за певним критерієм ефективності (одному або декільком).

Основні принципи побудови математичної моделі динамічного програмування.

а) Необхідно порівнювати точність і дрібниці моделі, по-перше, з точністю тих вихідних даних, якими оперує дослідник, і по-друге, з тими результатами, які потрібно одержати.

б) Математична модель динамічного програмування повинна відбивати істотні риси досліджуваного явища й при цьому не повинна його сильно спрощувати.

в) Математична модель динамічного програмування не може бути повністю адекватна реальному явищу, тому для його дослідження краще використати декілька моделей, для побудови яких застосовані різні математичні методи. Якщо при цьому виходять подібні результати, то дослідження закінчується. Якщо результати сильно розрізняються, то варто переглянути постановку задачі.

г) Будь-яка складна система завжди піддається малим зовнішнім і внутрішнім впливам, отже, математична модель динамічного програмування повинна бути стійкої, тобто зберігати свої властивості й структуру при цих впливах.

На рисунку 1.4 зображена класифікація математичних моделей і місце динамічних моделей у загальній структурі [1].

По числу критеріїв ефективності математичні моделі діляться на однокритеріальні й багатокритеріальні. Багатокритеріальні математичні моделі містять два й більше критерії.

По обліку невідомих факторів математичні моделі діляться на детерміновані, стохастичні й моделі з елементами невизначеності.

Характеристики

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее