183724 (629915), страница 5

Файл №629915 183724 (Анализ различных методов оценки статистических показателей при типическом отборе) 5 страница183724 (629915) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

,

где n – численность выборочной совокупности.

Значит, далее рассчитываем выборочную совокупность для данных полученных групп по формуле типического отбора выборочной совокупности пропорционального численности групп и вариации группировочного признака:

,

где - среднее квадратическое отклонение соответствующей полученной группы, Ni - численность генеральной совокупности соответствующей полученной группы. Тогда

,

,

.

Следовательно,

n = n1+n2+n3,

60=35+15+10.

Но, проведя механическую выборку внутри образованных групп, получаем несколько другие результаты.

Проводим механическую выборку внутри первой полученной группы, границы которой 1-9,1 где ni = 46:

Таблица 5 «механический отбор 1-ой группы 1,0-9,1»

№ п/п

Выручка от реализации, млн. руб.

№ п/п

Выручка от реализации, млн. руб.

1

6,3

70

7

3

3,7

72

1

6

8,2

74

3,2

10

5,1

76

6,7

20

8,2

78

5,3

22

4

80

1,5

25

6,7

82

9

29

3,8

86

1,3

34

5,4

94

6,5

37

8,8

99

5,8

40

5,3

102

4,5

42

7,9

105

5,3

46

6,6

109

2,7

48

7,3

111

3,3

51

3,8

117

1,4

53

6,1

119

6,1

57

4,6

124

1,6

60

5,7

126

8,5

62

5,8

128

8,9

64

4,4

130

5,3

66

7

132

7,1

68

3,8

134

4,6

136

7,9

146

7,7

Проводим механическую выборку внутри второй полученной группы, границы которой 9,1-17,2, где ni = 18:

Таблица 6 «Механический отбор 2-ой группы 9,1-17,2»

№ п/п

Выручка от реализации, млн. руб.

5

10,2

13

10

15

13,5

18

15

24

14,7

31

12,4

44

10,6

54

9,3

83

15

87

16,1

89

11,8

92

17,1

95

13,9

98

16

103

10,5

108

12,5

113

14

116

15

Проводим механическую выборку внутри третьей полученной группы, границы которой 17,2-25,3, где ni = 12:

Таблица 7 «механический отбор 3-ей группы 17,2-25,3»

№ п/п

Выручка от реализации, млн. руб.

7

22,6

17

25,3

30

20,5

39

20

59

17,4

122

18,1

138

17,7

140

22,9

143

21

145

19,4

148

24,9

150

25,2

После проведения механической выборки внутри образованных групп получаем, что:

n = 46+18+12=76.

4) Далее необходимо определить с вероятностью 0,683 границы, в которых будет находиться генеральная средняя выручка от реализации товаров и услуг.

Необходимо изначально определить среднюю ошибку репрезентативности по формуле:

,

где N – численность генеральной совокупности, - среднее квадратическое отклонение соответствующей выборочной совокупности данной группы, Ni - численность генеральной совокупности соответствующей группы, n – численность выборочной совокупности.

Но прежде чем найти среднюю ошибку репрезентативности, необходимо найти среднее квадратическое отклонение выборочной совокупности каждой группы .

Для первой группы:

,

для второй группы:

,

для третьей группы:

.

Далее рассчитываем ошибку репрезентативности:

,

так как вероятность P = 0,683, следовательно, t – коэффициент доверия равен 1, тогда

.

Границы определяются как:

.

Рассчитываем выборочную стратифицированную среднюю величину по формуле:

,

где - выборочная средняя соответствующей группы, ni – численность выборочной совокупности соответствующей группы; тогда

.

Известно, что генеральная средняя равна .

Значит, далее определяем границы, в которых будет находиться генеральная средняя выручка от реализации товаров и услуг:

9,780-0,184< <9,780+0,184,

9,596< <9,965.

5) Генеральная средняя в полученные границы не входит. Следовательно, можно сделать вывод о том, что при вероятности P = 0,683 результаты выборки нельзя распространить на генеральную совокупность - выборка является непредставительной.

Заключение

Выборочное наблюдение используется еще с XVII века, ведь существует ряд преимуществ его перед сплошным наблюдением: во-первых, например обследуемая совокупность очень велика, практически безгранична (совокупность участков морского дна или совокупность колосьев пшеницы на поле) и тогда абсолютно невозможно применение сплошного наблюдения; во-вторых, выборочный метод позволяет сберегать значительные количества труда и средств, как на этапе сбора сведений, так и на этапе их обработки и анализа - экономия же труда и средств, получаемая при замене сплошного наблюдения выборочным имеет немаловажное значение.

На практике разработан способ отбора выборочной совокупности, который позволяет с большей вероятностью распространить результаты выборки на всю генеральную совокупность. Он получил название типической выборки.

Типический (расслоенный) отбор применяется для отбора единиц из неоднородной совокупности, который используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

Вообще, расслоение представляет собой полезное средство планирования отбора. Этот метод позволяет использовать априорную информацию об общей совокупности и ее совокупностях по признаку без риска потерь. Выигрыш обычно умеренный, но в некоторых случаях может быть весьма большим. Расходы по осуществлению расслоенного отбора, как правила, довольно низкие.

Типический отбор выборочной совокупности является наиболее представительным по сравнению с другими способами отбора выборочной совокупности. Но как при любом другом способе отбора выборки все же существуют некоторые неточности статистических показателей при отборе выборки в процессе несплошного наблюдения. По точности статистического показателя исследователь может судить о результатах выборочного наблюдения – можно ли распространить результаты выборочной совокупности на генеральную совокупность или нет, следовательно, проверка выборочной совокупности на точность это необходимая часть анализа при несплошном наблюдении.

Существуют два вида оценок статистических показателей на точность: точечная и интервальная. Точечная представляет собой оценку параметра в генеральной совокупности одним числом, а интервальная предполагает построение числового интервала. Интервальное оценивание предполагает расчет ошибки репрезентативности – ошибки доверительного интервала.

Ошибка репрезентативности присуще только выборочному наблюдению и возникает в силу того, что выборочная совокупность не полностью воспроизводит генеральную совокупность.

Вообще, точность статистических показателей играет огромную роль в выборочном наблюдении; точность статистических показателей показывает степень их соответствия отображаемой ими действительности. Тутубалин В.Н. справедливо пишет, что «при аккуратной статистической обработке интересуются не только результатом, но и точностью, с которой этот результат получен, а для оценки точности уже нужна статистическая модель и вообще наука» [№12, стр. 28].

Для проверки насколько представительна выборка, образованная типическим способом, в расчетной части курсовой работы произведен отбор выборочной совокупности с помощью типического отбора. По данным таблицы 1 «Выручка от реализации товаров и услуг предприятиями обрабатывающей промышленности» проверяем, однородна данная совокупность или нет. Рассчитывая коэффициент вариации, убеждаемся, что совокупность неоднородна. Тогда разбиваем ее на три группы с равными интервалами. Далее осуществляем 40%-ную типическую выборку, пропорциональную численности предприятий в отдельных группах и вариации признака, с механическим отбором внутри образованных групп. Затем определяем с вероятностью 0,683 границы, в которых будет находиться генеральная средняя выручка от реализации товаров и услуг. Но с данной вероятностью генеральная средняя выручка от реализации товаров и услуг не будет входить в полученные границы. Следовательно, можно сделать вывод, о том, что результаты выборочной совокупности нельзя распространить на генеральную совокупность, т.е. выборка непредставительна. Но если увеличить вероятность, например до 0,954, то тогда в полученные границы обязательно войдет генеральная средняя выручка от реализации товаров и услуг и, следовательно, выборка будет являться представительной.

Список использованной литературы

  1. Венецкий И.Г. Теоретические и практические основы выборочного метода: Учебное пособие. – М.: Изд-во МЭСИ, 1975.

  2. Джессен Р. Дж. Методы статистических обследований/Перевод с англ., под ред. и с предисловие Е.М. Четыркина. – М.: Финансы и статистика, 1985.

  3. Дружинин Н.К. Выборочное наблюдение и эксперимент: (Общие логич. принципы организации). – М.: Статистика, 1977.

  4. Кокрен У. Методы выборочного исследования/Пер. с англ. – М.: Статистика, 1976.

  5. Методологические положения по статистике. Выпуск 3/Госкомстат России. – М, 2000.

  6. Моргенштерн О. О точности экономико-статистических наблюдений. М.: Статистика, 1968.

  7. Общая теория статистики: учеб. для вузов по направлению и спец. «Статистика» / И.И. Елисеева, М.М. Юзбашев; под ред. И.И. Елисеевой. – 5-е изд., перераб. доп. – М.: Финансы и статистика, 2005.

  8. Практикум по теории статистики: Учеб. пособие для экон. спец. вузов [Р.А. Шмойлова, А.Б. Гусынин, В.Г. Минашкин, Н.А. Садовникова]; Под ред. Р.А. Шмойловой. – М.: Финансы и статистика, 2001.

  9. Статистика: Учеб. пособие / [Л.П. Харченко, В.Г. Долженкова, В.Г. Ионин и др.]; НГАЭиУ. - 2-е изд., перераб. и доп. - М.: ИНФРА-М, 2002.

  10. Статистика: учебно-метод. комплекс для всех экон. спец. [В.В. Глинский и др.]; НГУЭУ, каф. статистики. – Новосибирск, 2005.

  11. Суслов И.П. Основы теории достоверности статистических показателей. Новосибирск: Наука, СО, 1979.

  12. Тутубалин В.Н. Статистическая обработка рядов наблюдения. М.: Знание, 1973.

  13. Шварц Г. Выборочный метод. Руководство по применению статистических методов оценивания/Пер. с нем. – М.: Статистика, 1978.

Характеристики

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее