183713 (629912), страница 2

Файл №629912 183713 ("Дискретні та неперервні динамічні системи в економіці" в MAPLE 7) 2 страница183713 (629912) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

з початковою умовою Y (t=0) =Y0; s, A, і – const;

є функція:

Завдання №2

Попит D та пропозиція S як функції змінної в часі ціни p=F(t) та її похідних задаються виразами

(2.2.0)

Знайти стаціонарну ціну рівноваги попиту та пропозиції pD=S(t) – при умові D=S – вирівнювання попиту та пропозиції, як функцію часу, та з’ясувати чи вона є стійкою (оцінити рівень динаміки похідної ).

Рішення:

1. Якщо попит D та пропозиція S є функціями ціни p(t) та її першої та другої похідних , то їх рівняння в загальному вигляді можна представити наступним чином [1]:

(2.2.1)

2. В умовах пошуку точок рівноваги попиту та пропозиції:

(2.2.2)

рівняння (2.2.1), віднімаючи перше від другого, перетворюємо у наступне рівняння

(2.2.3)

яке має наступні початкові умови:

(2.2.4)

Загальний розв’язок рівнянь (2.2.1) – (2.2.4) має вигляд [1]:

(2.2.5)

де С1 та С2 – довільні сталі;

– корені характеристичного рівняння:

(2.2.6)

Після вирішення рівняння (2.2.6), отримані – корені характеристичного рівняння в рівнянні (2.2.5) характеризують стаціонарність рівноважної ціни p(t) наступним чином:

1) Якщо обидва корені – є дійсними від’ємними або комплексними з від’ємною дійсною частиною, то рівняння (2.2.5) перетворюється до вигляду:

(2.2.7)

та з наростанням t рівноважна ціна p(t) буде прямувати до ціни рівноваги попиту D та S – PD=S, оскільки 1 та другий член рівняння (2.2.7) будуть наближатися до нуля.

2) Якщо обидва корені – є дійсними позитивними, або один з них має позитивний знак, або комплексними з позитивною дійсною частиною, то згідно рівнянь (2.2.5), (2.2.7) з наростанням t рівноважна ціна p(t) буде віддалятися від до ціни рівноваги попиту D та S – PD=S, оскільки або перший, або другий член рівняння (2.2.5) будуть наближатися до .

3. В точці рівноваги попиту та пропозиції D=S, рівняння (2.2.0) перетворюються в наступне диференційне рівняння другого порядку похідних:

(2.2.8)

Для пошуку точок стаціонарної ціни рівноваги pD=S враховуємо умови дорівнювання нулю першої та другої похідної в цих точках:

(2.2.9)

тоді рівняння (2.2.8) перетворюється до вигляду, який дозволяє розрахувати значення стаціонарної ціни рівноваги попиту та прозиції:

(2.2.10)

Для рівняння (2.2.8) характеристичне рівняння має наступний вигляд:

(2.2.11)

а корені його рішення, розраховані в пакеті MAPLE7, дорівнюють

> solve (L*L‑7*L‑30);

Оскільки корені характеристичного рівняння (2.2.11) дійсні та мають різні знаки – рішення рівняння (2.2.10) є нестійким.

Завдання №3

Знайти стаціонарні точки динамічної системи

(2.3.0)

та дослідити їх стійкість в лінійному наближенні.

Рішення:

1. Положення рівноваги вихідної динамічної системи (стаціонарні точки динамічної системи) визначається наступними умовами:

(2.3.1)

звідкіля маємо систему рівнянь рівноваги

(2.3.2)

Рішення системи рівнянь рівноваги (2.3.2) в пакеті MAPLE7 дає наступні 4 пари коренів – стаціонарних точок рівноваги динамічної системи (2.3.0):

> eqp1:=-x*x+2*x-x*y=0;

> eqp2:=-y*y+6*y‑2*x*y=0;

>

> solve({eqp1, eqp2}, {x, y});

(2.3.3)

2. Для дослідження стійкості кожного з отриманих рішень, складаємо системи першого наближення в околицях точок рівноваги за допомогою розкладення в ряд Тейлора. Формула Тейлора для функції двох змінних x, y у першому наближенні (тільки рівень 1 похідних) для функції в околицях точки x0, y0 має наступний вигляд [7]:

(2.3.4)

Побудову систем рівнянь першого наближення системи (2.3.2) виконуємо за допомогою пакета MAPLE7 [4]:

> DxDt:=-x*x+2*x-x*y;

> mtaylor (DxDt, [x=0, y=0], 2);

> mtaylor (DxDt, [x=2, y=0], 2);

> mtaylor (DxDt, [x=4, y=-2], 2);

> mtaylor (DxDt, [x=0, y=6], 2);

(2.3.5)

> DyDt:=-y*y+6*y‑2*x*y;

> mtaylor (DyDt, [x=0, y=0], 2);

> mtaylor (DyDt, [x=2, y=0], 2);

> mtaylor (DyDt, [x=4, y=-2], 2);

> mtaylor (DyDt, [x=0, y=6], 2);

>

(2.3.6)

6. Використовуючи отримані результати (2.3.5), (2.3.6), дослідження стійкості рішення для 4‑х пар коренів проводимо в наступній послідовності [5]:

6.1. 1 пара коренів – x=0, y=0

Cистема характеристичних рівнянь 1‑го наближення ряду Тейлора відносно точки (x=0, y=0) має вигляд:

Для знаходження умов стійкості будуємо характеристичну матрицю:

Звідки характеристичне рівняння

Корені рішення цього рівняння та є дійсні та мають однакові знаки, що відповідає стійкості рішення рівноваги [5] в точці (x=0, y=0).

Пара коренів – x=2, y=0

Cистема характеристичних рівнянь 1‑го наближення ряду Тейлора відносно точки (x=2, y=0) має вигляд:

Виконуючи заміну змінних в системі () на

отримуємо модифіковану систему рівнянь:

Для знаходження умов стійкості будуємо характеристичну матрицю:

Звідки характеристичне рівняння

Вирішуємо рівняння () в пакеті MAPLE7

> L2:=a*a+0*a‑2=0;

>

> solve(L2);

Корені рішення цього рівняння та є дійсні та мають різні знаки, що відповідає нестійкості рішення рівноваги [5] в точці (x=2, y=0).

3 пара коренів – x=4, y=-2

Cистема характеристичних рівнянь 1‑го наближення ряду Тейлора відносно точки (x=0, y=6) має вигляд:

Виконуючи заміну змінних в системі () на

отримуємо модифіковану систему рівнянь:

Для знаходження умов стійкості будуємо характеристичну матрицю:

Звідки характеристичне рівняння

Вирішуємо рівняння () в пакеті MAPLE7

> solve (L*L+2*L+8);

Корені рішення цього рівняння та є комплексні та мають однакові негативні знаки при дійсній частині, що відповідає стійкості рішення рівноваги [5] в точці (x=4, y=-2).

Пара коренів – x=0, y=6

Cистема характеристичних рівнянь 1‑го наближення ряду Тейлора відносно точки (x=4, y=-2) має вигляд:

Виконуючи заміну змінних в системі () на

отримуємо модифіковану систему рівнянь:

Для знаходження умов стійкості будуємо характеристичну матрицю:

Звідки характеристичне рівняння

Корені рішення цього рівняння та є дійсними та мають знак (–) при дійсній частині, що відповідає асимптотичній стійкості рішення рівноваги [5] в точці (x=4, y=-2).

Характеристики

Тип файла
Документ
Размер
1,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее