182430 (629465), страница 2

Файл №629465 182430 (Статистическая проверка гипотез) 2 страница182430 (629465) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Таблица 2.

серии

Результаты экспериментов

1

2

:

:

N

Y11 Y12 ... Y1m

Y21 Y22 ... Y2m

:

:

YN1 YN2 ... YNm

:

:

- оценка математического ожидания результатов эксперимента в i-ой серии.

- оценка дисперсии результатов эксперимента в i-ой серии.

Для проверки нулевой гипотезы выбирается критерий Кохрена (G):

.

По таблице распределения критических точек критерия Кохрена в зависимости от уровня значимости q, числа степеней свободы f=m-1 и числа серий N определяем критическую точку:

Gkp = G (q, f, N).

По результатам эксперимента вычисляем наблюдаемое значение критерия:

.

Если Gнабл<Gкр, то гипотеза H0 принимается, в противном случае принимается H1. Если гипотеза H0 не принята, то для воспроизводимости результатов эксперимента необходимо или повысить число параллельных опытов m, или увеличить точность измерения переменной состояния. Если опыты воспроизводимы, то вычисляется ошибка опыта (дисперсия воспроизводимости опытов)

.

Дисперсия воспроизводимости опытов S02 является оценкой дисперсии переменной состояния y2.

Число степеней свободы дисперсии воспроизводимости: f0=N(m-1).

В некоторых лабораторных экспериментах повторные измерения отклика в параллельных опытах дают один и тот же результат . Тогда для расчета дисперсии воспроизводимости можно воспользоваться метрологическими характеристиками измерительных приборов. В паспортных данных прибора указывается класс его точности ( K , % от предела измерения ). Это позволяет определить максимальную ошибку измерения

. (1)

Случайная ошибка прибора подчиняется нормальному закону распределения . В машиностроении обычно считается , что , при этом вероятность попадания в интервал равна 0,9973 и является технической единицей.

В радиоэлектронной аппаратуре стабильность параметров активных и пассивных элементов значительно ниже и надежность 0,95 вполне приемлема. Поэтому выбираем . Подставляя значение в выражение (1), получим дисперсию

.

Дисперсию воспроизводимости полагаем равной

.

Пример:

Проверить гипотезу о воспроизводимости опытов, в которых переменная состояния y зависит от трех факторов x1 , x2 , x3 . Выбрать уровень значимости q=0,05.

Проведены 8 серий по 2 параллельных опыта в каждой серии. Результаты эксперимента и расчеты сведены в таблицу:

Таблица 3.

серии

X1

X2

X3

Y1

Y2

Si2

1

0.40

0.20

24.00

0.71

0.77

0.74

0.001800

2

0.40

0.38

36.00

0.61

0.54

0.58

0.002450

3

0.40

0.38

24.00

0.65

0.59

0.62

0.001800

4

0.40

0.20

36.00

0.75

0.72

0.74

0.000450

5

0.60

0.20

24.00

0.73

0.64

0.69

0.004050

6

0.60

0.20

36.00

0.90

0.79

0.84

0.006050

7

0.60

0.38

24.00

0.74

0.71

0.73

0.000450

8

0.60

0.38

36.00

0.80

0.78

0.79

0.000200

Для каждой серии опытов вычисляем среднее значение и дисперсии результатов Si2 . Далее выбираем и вычисляем

.Наблюдаемое значение критерия:

.

Значение критерия Кохрена по таблице: Gкр=0.82.

Так как Gнабл<Gкр , то нулевая гипотеза H0 принимается.

Опыты воспроизводимы. Ошибка опыта S02=0.0021562.

5. Проверка гипотезы о нормальном распределении ошибок эксперимента

Как правило, ошибки результатов экспериментов распределены по нормальному закону .

Выберем следующие гипотезы:

H0: ошибки эксперимента распределены по нормальному закону;

H1: ошибки эксперимента не распределены по нормальному закону.

Для проверки гипотезы H0 используется W–критерий.

Пусть проведено m параллельных опытов ( 3 m 50 ).

Для обработки результатов эксперимента нужно:

  1. Расположить значения переменной состояния в неубывающем порядке:

y1 y2 ... ym .

  1. Вычислить: .

  1. Вычислить: где , если m-чётное и ,

если m-нечётное.

Коэффициенты ai выбираются из таблицы в зависимости от m.

  1. Вычислить наблюдаемое значение критерия:

  1. По таблице критических точек найти Wкр -критическое значение критерия в зависимости от числа степеней свободы f = m и уровня значимости q:

Wкр = W(q, f );

  1. Если наблюдаемое значение больше критического Wнабл > Wкр (критическая область левосторонняя), то гипотеза H0 принимается, т.е. ошибки эксперимента распределены по нормальному закону. В противном случае, если Wнабл<Wкр , то гипотеза H0 отвергается.

Пример:

Проведено 16 параллельных опытов. Получены следующие значения переменной состояния Y:

0.035 0.047 0.055 0.067 0.066 0.077 0.078 0.088

    1. 0.1 0.121 0.136 0.153 0.176 0.22 0.231

m = 16, q = 0,05, l = 16/2 = 8.

Отметим, что результаты эксперимента расположены в неубывающем порядке.

;

;

где значения для m = 16 взяты из таблицы:

Наблюдаемое значение критерия:

.

Критическое значение критерия:

Так как Wнабл>Wкр, , то ошибки эксперимента распределены по нормальному закону.

6. Проверка гипотезы о виде распределения. ( Критерий согласия Пирсона )

Пусть проведены N экспериментов в одинаковых условиях. Проверяется гипотеза H0 : результаты эксперимента распределены по закону А. Критерий для проверки выдвинутой гипотезы называется критерием согласия.

Разобьем интервал полученных результатов эксперимента [Ymin , Ymax] на m равных интервалов.

[Yi -1 , Yi ]; i=1,...,m.

Обозначим через Yi* середину i-го интервала, ni - число результатов, попавших в i-й интервал. Получим ряд распределения:

Yi*

Y1*

Y2*

...

Ym*

ni

n1

n2

...

nm

Пусть в предположении, что результаты эксперимента имеют распределение А, вычислены теоретические частоты ni.

В качестве статистического критерия выбирается случайная величина:

Чем меньше значение, принимаемое 2, тем ближе между собой теоретическое и эмпирическое распределения. Случайная величина 2 имеет известное распределение Пирсона или 2.- распределение.

Критическое значение критерия определяется по таблице распределения критических точек по заданному уровню значимости q и числу степеней свободы f:

f = m-r-1;

где r-число параметров распределения, определяемых по результатам эксперимента. Для нормального распределения r=2, для распределения Пуассона и показательного распределения r=1.

Наблюдаемое значение критерия 2набл рассчитывается по результатам экспериментов

.

Если 2набл<2кр, то гипотеза H0 принимается, т. е. результаты эксперимента распределены закону А . Если 2набл>2кр, то H0 -отвергается (критическая область правосторонняя).

6.1 Расчёт теоретических частот для нормального распределения

1. Вычисляем оценки математического ожидания и дисперсии:

2. Вычисляем границы интервалов нормированной переменной Z:

, i = 0,1,…., m.

  1. Выберем по таблице значения функции Лапласа Ф(Zi);

  2. Найдём вероятность попадания значений нормально распределённой случайной величины Z в i-й частичный интервал:

  1. Вычисляем теоретические частоты: .

Пример:

Пусть даны результаты 75 экспериментов. Проверить гипотезу о нормальном распределении результатов экспериментов:

-50

-39

-48

-56

-49

-44

-39

-42

-56

-46

-39

-50

-52

-48

-55

-46

-37

-51

-52

-45

-46

-51

-43

-49

-35

-57

-48

-42

-42

-54

-33

-44

-56

-44

-43

-41

-47

-42

-47

-59

-54

-53

-55

-34

-53

-50

-36

-53

-53

-55

-54

-39

-53

-42

-49

-45

-48

-50

-48

-56

-52

-46

-53

-56

-57

-42

-53

-50

-44

-46

-59

-62

-57

-36

-43

Начало первого интервала:

-64

Длина интервала:

4

Разобьем интервал [–64,-32] на частичные интервалы с шагом, равным 4. Для каждого частичного интервала подсчитаем число результатов, попавших в данный интервал. Обозначим эти частоты ni. Вычислим середины частичных интервалов .

Полученные результаты вычислений занесем в таблицу.

Находим оценки математического ожидания и среднего квадратического отклонения (1/75)·(-65-290-972-650-644-788-190-170) =

= -3566/75=-47.54;

где Y*i – середина i -го интервала.

(1/74)(209.09+547.058+751.1688+

+78.6708+33.2024+429.6824+455.058+916.658) = =3420.5884/74=46.224 ;

Sy = 6.7988=6.80;

Вычислим границы интервала в кодированных переменных:

.

Вероятность попадания нормально распределённой случайной величины в i-тый частичный интервал

Pi = Ф(Zi+1) - Ф(Zi); i=1,...,m,

где Ф(z) - функция Лапласа.

Вычислим теоретические частоты ni' =NPi.

Величины Zi, Pi и ni' заносим в таблицу.

Определим наблюдаемое значение критерия

Kнабл= 0,9168 + 0,0526 + 4,008 + 0,69 + 0,4303 + 0,1555 + 0,3874 + 0,74137) = 7,38197;

Найдём критическое значение критерия Пирсона для уровня значимости q=0.1 и числа степеней свободы

f=m-2-1=8-2-1=5:

Kкр=2 (q,f)= 2(0.1;5)=9.236.

Таблица 4.

ni

Z i

Ф(Z i)

Pi

ni1

ni

(ni1-ni)2

ni1

1

2

3

4

5

6

7

8

-64

-60

-56

-52

-48

-44

-40

-36

-32

1

5

18

13

14

14

5

5

-62

-58

-54

-50

-46

-42

-38

-34

-

-1.83

-1.24

-0.65

-0.06

0.52

1.11

1.69

+

-0.5

-0.4664

-0.3925

-0.2415

-0.0239

0.19847

0.3665

0.45449

0.5

0.0336

0.0739

0.1504

0.2182

0.2224

0.1680

0.0880

0.0455

Pi=1

2.52

5.54

11.277

16.36

16.679

12.6

6.599

3.41

1

5

18

13

14

14

5

5

0.9168

0.0526

4.008

0.69

0.4303

0.1555

0.3874

0.74137

Так как Kнабл < Kкр , то гипотеза H0 справедлива, т.е. результаты эксперимента распределены по нормальному закону.

7.Проверка гипотезы о согласованности мнений экспертов (априорное ранжирование переменных)

Суть метода состоит в том, что специалистам (экспертам), хорошо знакомым с исследуемым процессом, предлагается расположить факторы в порядке убывания степени их влияния на переменную состояния.

Пусть приглашены m экспертов, которым предложено проранжировать n факторов: x1, x2,...,xn. Обозначим через аij - ранг, выставляемый i-ым экспертом j-му фактору (1аij n; i=1,...,m; j=1,...,n).

Результаты опроса заносятся в сводную таблицу:

Таблица 5.

фактор

X1

X2

................

Xn

спец

1

2

m

a11

a21

am1

A12

a22

am2

................

................

................

................

................

................

A1n

a2n

amn

Сумма рангов по строке (сумма рангов, выставляемых конкретным экспертом) для всех строк одинакова

.

Среднее значение рангов в строке:

Среднее значение суммы рангов фиксированного фактора:

По результатам опроса экспертов проверяется гипотеза H0: мнение экспертов согласованы, при альтернативной гипотезе H1: мнения экспертов не согласованы. Вычисляется коэффициент согласия (коэффициент конкордации):

,

где S(d2) - сумма квадратов отклонения суммы рангов от средней суммы:

,

а .

Если мнения экспертов согласованны, то:

Если мнения экспертов рассогласованны, то: S(d2) близко к 0.

Таким образом, получаем, что если мнения экспертов согласованны, то коэффициент конкордации W = 1. Если мнения экспертов полностью рассогласованны, то W 0.

Для проверки нулевой гипотезы в качестве статистического критерия выбираем случайную величину (n-1)mW. Доказано, что при n>7 эта случайная величина имеет 2.- распределение с числом степеней свободы f = n - 1. Таким образом, критическое значение критерия определяется по таблице критических точек 2.-распределения в зависимости от q и f. Наблюдаемое значение:

2.набл.= (n-1)mW

Если 2.набл.> 2.кр., то мнения экспертов согласуются. В противном случае мнения экспертов рассогласованны (критическая область левосторонняя).

Если из нескольких факторов эксперт ни одному не может отдать предпочтение, то в этом случае в таблицу ранжирования этим факторам он выставляет одинаковые дробные ранги . Коэффициент конкордации вычисляется по формуле:

,

где

,

где i - номер эксперта;

k - номер повторения;

tik - число одинаковых рангов в k-ом повторении.

Если мнения экспертов согласованны, то строится ранжировочная диаграмма. В ней по оси абсцисс откладываются факторы, по оси ординат - суммы рангов в обратном порядке. По виду диаграммы судят о значимом или незначимом влиянии факторов на переменную состояния и об использовании факторов в основном эксперименте.

Пример:

Для некоторого технологического объекта рассматриваются шесть факторов, влияющих на переменную состояния. Мнения четырёх экспертов приведены в таблице. Проверить гипотезу о согласованности экспертов и, если она справедлива, то изобразить гистограмму ранжирования.

Таблица 7.

ф./ №спец

x1

x2

X3

X4

x5

x6

ti1

t3i1-ti1

ti2

t3i2- ti2

Ti

1

1.5

5

1.5

4

3

6

2

6

0

6

2

2

3

1

4.5

4.5

6

2

6

0

6

3

2

3

1

5.5

5.5

4

2

6

0

6

4

1.5

3.5

1.5

5

3.5

6

2

6

2

6

12

7

14.5

5

19

16.5

2.2

-7

0.5

-9

5

2.5

8

dj2

49

0.25

81

25

6.25

64

m=4; n=6.

Средняя сумма рангов в столбце:

.

.

Вычислим коэффициент конкордации:

.

Наблюдаемое значение критерия определяется по формуле:

2.набл =m(n-1)W=450,805=16,1..

Критическое значение критерия находим в таблице для уровня значимости q=0.05 и числа степеней свободы f = n - 1 = 6 – 1 = 5:

2.кр.= 2.(0,05;5)=11,07.

Так как 2.набл.> 2.кр., то мнения экспертов согласованны.

аij

0

10

20

30 X

X3 X1 X2 X5 X4 X6

Рис.2. Ранжировочная гистограмма.


8. Уравнение линейной регрессии. Коэффициент корреляции. Проверка гипотезы о значимости коэффициента корреляции

После отсеивания незначимых факторов проверяется наличие корреляционных связей между факторами и между факторами и переменной состояния. Из статистики известно, что линейная связь между величинами X и Y оценивается с помощью коэффициента корреляции.

Пусть проведены N экспериментов, в результате которых получены следующие значения величин X и Y:

X

x1,x2,............,xN

Y

y1,y2,............,yN

Нанесём результаты экспериментов на координатную плоскость в виде точек, координатами которых является xi , y i , получим корреляционное поле

Рис.3. Корреляционное поле.

На рис.3а) – явно линейная зависимость между X и Y,

на рис.3б) –зависимость нелинейная,

на рис.3в) – зависимость между X и Y отсутствует.

Простейшим видом эмпирической формулы является линейная зависимость

Y = aX + b.

Функцию f(x) = ax + b называют линейной регрессией Y на X .

Существуют различные методы вычисления коэффициентов a и b: метод “натянутой нити”, метод сумм и метод наименьших квадратов.

Рассмотрим метод “натянутой нити”.

Нанесём результаты эксперимента на координатную плоскость (см. рис.4)) . Мысленно натянем нить таким образом, чтобы по обе стороны от неё оставалось приблизительно равное число точек, при этом суммы расстояний от точек до нити с обеих сторон должны быть одинаковы и минимальны.

Р ис.4. Метод ”натянутой нити”.

На прямой, совпадающей с направлением нити, выберем две точки с координатами (x1,y1) и (x2,y2). Подставим координаты точек в уравнение y=ax+b. Получим систему из двух уравнений с двумя неизвестными a и b и решаем её

Составим уравнение y=ax+b, используя решение (a,b) системы.

8.1 Метод наименьших квадратов

Будем искать уравнение регрессии в виде линейной зависимости:

Коэффициенты 0 и 1 определяются из условия: сумма квадратов отклонений экспериментальных значений y от рассчитанных по уравнению регрессии должна быть минимальной.

Для отыскания минимума составим систему уравнений

Решая эту систему, получаем значения коэффициентов:

Обозначим через rxy оценку коэффициента линейной корреляции:

.

Тогда коэффициенты регрессии определяются равенствами

- уравнение линейной регрессии.

Аналогичные вычисления для второго уравнения регрессии x=1y+0=g(y) дают следующие значения коэффициентов:

.

Тогда уравнение регрессии имеет вид:

.

Свойства коэффициента линейной корреляции:

1.Коэффициент линейной корреляции rxy по абсолютной величине не превышает 1:

2.Если X и Y (случайные величины) независимы, то rxy=0, обратное утверждение верно не всегда.

3.Если rxy=1, то величины X, Y связаны функциональной линейной зависимостью.

4.Если , то зависимость X и Y строят в виде линейной функции. В случае рассматриваются другие виды зависимости, например, квадратичная зависимость, гиперболическая, логарифмическая:

,

8.2 Проверка незначимости коэффициента корреляции

Пусть по результатам эксперимента рассчитана оценка коэффициента корреляции rxy. Выберем нулевую гипотезу: H0 - коэффициент корреляции xy незначим; альтернативную гипотезу: H1 – коэффициент корреляции xy значим.

Для проверки справедливости H0 выберем критерий Стьюдента. Наблюдаемое значение критерия рассчитывается по результатам эксперимента по следующей формуле:

Характеристики

Тип файла
Документ
Размер
9,67 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее