182346 (629426)

Файл №629426 182346 (Статистическая обработка данных. Статистика денежного обращения)182346 (629426)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

КУРСОВАЯ РАБОТА

по дисциплине "Статистика"

на тему: "Статистическая обработка данных.

Статистика денежного обращения"

Санкт-Петербург 2010

Содержание

Введение

Глава 1. Статистическая обработка данных

1.1 Постановка задачи. Цель работы. Исходные данные

1.2 Вычисление основных выборочных характеристик по заданной выборке

1.3 Результаты вычисления интервальных оценок для математического ожидания и дисперсии

1.4 Результаты ранжирования выборочных данных вычисления моды и медианы

1.5 Параметрическая оценка функции плотности распределения

1.6. Проверка гипотезы о нормальном распределении случайной величины по критерию Пирсона

Глава 2. Статистика денежного обращения

2.1 Понятия денежного обращения и денежной массы

2.2 Система показателей денежной массы

2.3 Структура денежной массы и ее виды

2.4 Понятие денежной базы и ее составляющие

2.5 Статистический анализ оборачиваемости денежной массы

Заключение

Список литературы


Введение

Данная курсовая работа состоит из двух частей: в первой студентом по практическому заданию с индивидуальным вариантом необходимо данную выборку подвергнуть исследованию, путем расчета различных показателей, построить модели ряда теоретическую и практическую, сделать вывод о возможности или невозможности нормального распределения в данном ряду.

К основным задачам выполняемой работы можно отнести:

поставить задачу по исследованию ряда

определить основные параметры ряда

ранжировать ряд

произвести вычисления интервальных оценок для матожидания и дисперсии и некоторые другие задачи.

Во второй части работы основными задачами являются:

узнать основные теоретические понятия темы "структура денежного обращения"

произвести оценку по формулам показателей денежной системы России

проанализировать полученные данные за период времени 2005-2009

После выполнения поставленных задач, цель курсовой работы будет выполнена


Глава 1. Статистическая обработка данных

1.1 Постановка задачи. Цель работы. Исходные данные

По выборке объёма N провести статистическую обработку результатов

эксперимента.

Цель работы:

Изучить и усвоить основные понятия математической статистики. Овладеть методикой статистического оценивания числовых характеристик случайной величины и нормального закона распределения. Ознакомиться с методикой применения статистических критериев для проверки гипотез.

Исходные данные:

Проведён эксперимент, в результате которого была получена выборка N = 60,которая соответствует случайной величине, распределённой по нормальному закону. Итак, обратимся к приведенной ниже выборке. Затем проведем ранжирование.

Таблица 1.1

Выборка (исходные данные)

1

15,10

11

16,40

21

15,70

31

16,67

41

15,15

51

17,94

2

15,26

12

16,52

22

15,01

32

15,93

42

15,12

52

15,04

3

16,75

13

17,70

23

17,39

33

16,31

43

16,91

53

16,62

4

16,40

14

16,29

24

17,12

34

15,15

44

17,78

54

15,68

5

15,64

15

14,44

25

15,61

35

17,38

45

15,80

55

16,38

6

14,40

16

17,02

26

15,81

36

15,78

46

17,36

56

15,03

7

15,86

17

15,88

27

16,26

37

16,05

47

16,60

57

15,38

8

16,30

18

15,41

28

15,96

38

15,22

48

15,31

58

15,85

9

15,22

19

16,84

29

15,28

39

15,02

49

16,91

59

16,38

10

14,85

20

18, 19

30

15,59

40

15,81

50

15,07

60

17,26


1.2 Вычисление основных выборочных характеристик по заданной выборке

1. Среднее арифметическое случайной величины X - представляет собой обобщенную количественную характеристику признаков статистической совокупности в конкретных условиях места и времени

16,0515

2. Среднее линейное отклонение - определяется как среднее арифметическое абсолютных значений вариант х-итое и среднего арифметического х-с-чертой

=0,7447

3. Дисперсия случайной величины X - мера разброса данной случайной величины, то есть её отклонения от математического ожидания

0,795586

4. Несмещенная оценка дисперсии

0,809071

5. Среднее квадратическое отклонение

0,86296

6. Несмещенная выборочная оценка для среднего квадратического отклонения

0,899484

7. Коэффициент вариации

=5,603735

8. Коэффициент асимметрии случайной величины X

=0,069231

Коэффициент асимметрии положителен, значит "длинная часть" кривой распределена справа от математического ожидания

9. Коэффициент эксцесса случайной величины X

3= - 0,68119

Для нормального распределения коэффициент эксцесса равен 0

Так как коэффициент отрицательный, то это значит, что сравниваемая кривая имеет более плоскую вершину, чем при нормальном распределении

10. Вариационный размах - показывает, насколько велико различие между наибольшей и наименьшей единицами совокупности

R = X max - X min=3,79

На основании полученных вычислений можно сделать следующие выводы:

1. Необходимое условие для того, чтобы выборка имела нормальный закон распределения, выполняется, т.к. для коэффициента вариации V выполняется неравенство:

V = 5,603735% < 33%

Отсюда следует, что все выборочные значения случайной величины X положительны, что мы и видим в исходных данных.

2. Для нормального распределения коэффициенты асимметрии и эксцесса должны быть равны нулю, т.е. Аs = Е = О

Выборочный коэффициент асимметрии служит для характеристики асимметрии распределения случайной величины. Если распределение симметрично относительно математического ожидания, то коэффициент асимметрии равен 0.

По результатам вычисления асимметрия близка к нулю Аs = 0,069231.

В связи с этим необходимы дополнительные исследования для выяснения степени близости распределения выборки к нормальному распределению.


1.3 Результаты вычисления интервальных оценок для математического ожидания и дисперсии

Для вычисления интервальной оценки математического ожидания воспользуемся формулой:

Где a=M [X] - математическое ожидание,

N-1=V=59 - число степеней свободы,

- величина, численно равная половине интервала, в который может попасть случайная величина

, имеющая определённый закон распределения при заданной доверительной вероятности р и заданном числе степеней свободы V.

Подставляем в формулу вычисленные ранее значения , и N. В результате получим

16,0515 - t59,p (0,899484/√60) ‹a‹16,0515 + t59,p (0,899484/√60)

Задаёмся доверительной вероятностью ;

Для каждого значения (i=1,2) находим по таблице значения и вычисляем два варианта интервальных оценок для математического ожидания.

1. При

16,0515 - 2 (0,899484/√60) = 15,81925

16,0515 + 2 (0,899484/√60) = 16,28375

15,81925 < a < 16,28375

2.При t59; 0,99= 2,66

16,0515 - 2,66 (0,899484/√60) = 15,74261

16,0515 + 2,66 (0,899484/√60) = 16,36039

15,74261 < a < 16,36039

Для интервальной оценки дисперсии существуют следующие неравенства:

Подставляем в неравенство известные значения N и получим неравенство, в котором неизвестны и .

(59*0,809071) /Х222< (59*0,809071) / Х12

Задаваясь доверительной вероятностью (или уровнем значимости а) вычисляем значения и . Используем эти два значения и степень свободы V=N-1 по таблице находим и

и - это границы интервала, в который попадает случайная величина Х, имеющая распределение вероятности и заданной степени свободы V.

Для =0,95

и V=59 находим по таблице:

Подставляя в неравенства и и произведя вычисления, получим интервальную оценку:

(59*0,809071) /83,2976<σ2< (59*0,809071) / 40,4817

0,573068<σ2<1,179179

Для

; и V=59 находим по таблице:

,

Подставляя в неравенства и и произведя вычисления, получим интервальную оценку:

(59*0,809071) /91,9517<σ2< (59*0,809071) / 35,5346

0,519133<σ2<1,343343

Для интервальной оценки среднего квадратического отклонения имеем

Характеристики

Тип файла
Документ
Размер
20,63 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее