180735 (628772), страница 5
Текст из файла (страница 5)
Асимметричные ряды и соответствующие кривые имеют различные формы распределений, исследованные математической статистикой. Такими формами являются распределение Пуассона, распределение Максвелла, распределение Пирсона и др. Здесь асимметричность рассматривается в целом как единый тип распределения. При этом различают правостороннюю и левостороннюю асимметрии (скошенность).
Если длинная ветвь кривой расположена правее вершины, то асимметрия называется правосторонней, если эта ветвь расположена левее вершины – левосторонней. При правосторонней асимметрии при левосторонней
. Поэтому разность между ними, отнесенную к
, называют коэффициентом К. Пирсона и используют в качестве коэффициента асимметрии:
. (20)
При правосторонней асимметрии этот коэффициент положителен, при левосторонней – отрицателен. Если = 0, вариационный ряд симметричен. Чем больше абсолютная величина коэффициента, тем больше степень скошенности.
Наиболее точным показателем асимметрии распределения является коэффициент асимметрии , вычисляемый по формуле
(21)
где n – число единиц совокупности. Как и в случае коэффициента Пирсона, при > 0 имеет место правосторонняя асимметрия, при
< 0 левосторонняя. В симметричных распределениях
= 0.
Чем больше величина | |, тем более асимметрично распределение. Установлена следующая оценочная шкала асимметричности:
| |
- асимметрия незначительная;
0,25 < | |
- асимметрия заметная (умеренная);
| | > 0,5 - асимметрия существенная.
Поскольку коэффициенты и
являются относительными безразмерными величинами, они часто применяются для сравнительного анализа асимметричности различных рядов распределения.
Характер асимметрии иногда указывает на направление развития. При исследовании вариации признаков, в отношении которых имеется заинтересованность в их увеличении (выполнение норм, выпуск продукции и т.д.), правосторонняя асимметрия свидетельствует о прогрессивности развития, о том, что оно идет в сторону увеличения показателя, а левосторонняя асимметрия указывает на наличие большого числа отстающих участков.
При исследовании вариации признаков, в отношении которых имеется заинтересованность в их уменьшении (себестоимость, трудоемкость, расход сырья на единицу продукции и т.п.), правосторонняя асимметрия свидетельствует о недостатках в развитии изучаемого процесса, левосторонняя – о прогрессивности его развития, о том, что последнее идет в сторону уменьшения показателя. В распределении работников по стажу (см. пример 4.9
= 5,75
) наблюдается правосторонняя асимметрия, так как коэффициент асимметрии положителен: (5,955-5,75):2,47=0,095. Такая асимметрия для данного ряда прогрессивна, она свидетельствует о развитии ряда в сторону увеличения исследуемого показателя.
Форму распределения можно ориентировочно определить непосредственно рассмотрением эмпирических данных ряда, особенно если они изображены гистограммой и полигоном. Чтобы убедиться в правильности ориентировочного определения формы распределения, эмпирические данные ряда исследуются на их близость к теоретическому распределению, устанавливаемому с помощью построения соответствующей кривой распределения. Однако во многих случаях ни теория, ни непосредственное рассмотрение эмпирических данных не дают ответов на вопрос о форме распределения. Тогда обычно ведется исследование на близость эмпирических данных к нормальному распределению, так как распределения с небольшой или умеренной асимметричностью в большинстве случаев по своему типу относятся к нормальным.
Для объективного суждения о степени соответствия эмпирического распределения нормальному в статистике используется ряд критериев, называемых критериями согласия или соответствия.
К ним относятся критерии Пирсона, Романовского, Ястремского, Колмогорова, основанные на использовании различных теоретических представлений.
Например, наиболее используемый критерий согласия Пирсона («хи-квадрат») определяется по формуле:
, (22)
где - эмпирические частоты (частости)
- теоретические частоты (частости)
Для оценки близости эмпирического распределения к теоретическому определяется вероятность достижения этим критерием данной величины. Если эта вероятность превышает 0,05, то отклонения фактических частот от теоретических считаются случайными, несущественными. Если же
, то отклонения считаются существенными, а эмпирическое распределение – принципиально отличным от теоретического.
Для характеристики степени отклонения симметричного распределения от нормального рассчитывается показатель эксцесса. Он приближенно может быть определен с помощью коэффициента Линдберга.
, (23)
где - доля (в%) количества вариант, лежащих в интервале равном половине среднего квадратического отклонения (в ту и другую сторону от величины средней) в общем количестве вариант данного ряда;
38,29 – доля (в %) количества вариант, лежащих в интервале, равном половине среднего квадратического отклонения (в ту и другую сторону от величины средней) в общем количестве вариант ряда нормального распределения
Эксцесс может быть положительным, отрицательным и равным нулю.
У высоковершинных кривых показатель эксцесса имеет положительный знак, у низковершинных кривых – отрицательный знак. Для кривой нормального распределения его величина равна нулю.
Для более точной характеристики степени отклонения симметричного распределения от нормального рассчитывается показатель островершинности (показатель эксцесса) (Ek ) по формуле:
(24)
Он, как и коэффициент Линдберга, может быть положительным, отрицательным и равным нулю. Показатель эксцесса, как и показатель асимметрии, - число отвлеченное. Предельным значением отрицательного эксцесса является значение Ek= -2; величина же положительного эксцесса является величиной бесконечной.
Определение показателей асимметрии и эксцесса имеет не только описательное значение, часто их величины дают определенные указания для дальнейшего исследования изучаемых явлений. Так, например, появление значительного отрицательного эксцесса может указывать на качественную неоднородность исследуемой совокупности.
Современные компьютерные технологии открывают широкие возможности для выполнения громоздких вычислительных операций по анализу вариационных рядов. Если материал теоретически осмыслен и выдвинута разумная гипотеза о форме распределения (последнее, кстати, ЭВМ тоже в состоянии проверить), вычислительные устройства могут быстро исчислить различные обобщающие показатели и критерии, построить графики и т.д. Это тем более возможно, так как показатели вариации сравнительно несложны и хорошо формализованы.
Список использованной литературы
-
Виноградова Н.М., Евдокимова В.Т., Хитарова Е.М. и др. Общая теория статистики: Учебное пособие /Под ред. И.Г. Венецкого/ – М.: Статистика, 1968г- 380с
-
Гусаров Виктор Максимович. Статистика: Учеб. пособие для студентов вузов обучающихся по экономическим специальностям/ В.М. Гусаров, Е.И. Кузнецова.- 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2007.- 479с
-
Гусаров, Виктор Максимович. Обшая теория статистики: Учеб. пособие для студентов вузов обучающихся по экономическим специальностям/ В.М. Гусаров, С.М. Проява.- 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2008.- 207с
-
Ильишев Анатолий Михайлович. Общая теория статистики: учебник для студентов вузов, обучающихся по специальностям экономики и управления / А.М. Ильишев, - М.: ЮНИТИ- ДАНА, 2008. – 535с
-
Ряузов Н.Н. Общая теория статистики: Учебник для студ. экон. спец. вузов – 4-е изд. перераб. и доп. – М.: Финансы и статистика, 1984.- 343с
-
Салин В.Н., Чурилова Э.Ю. Курс теории статистики для подготовки специалистов финансово-экономического профиля: Учебник. – М.: Финансы и статистика, 2006- 480с
-
Статистические методы анализа факторов повышения эффективности общественного производства. Учебное пособие. Под ред. Ряузова Н.Н. Акиншиной М.К.- М. ВЗФЭИ. 1980-88с
-
Статистика: Учеб. пособие / А.В. Багат, М.М. Конкина, В.М. Симчера и др.; Под ред. В.М. Симчеры. – М.: Финансы и статистика, 2005.- 368с
-
Статистика. Компьютерные лабораторные работы: Методические указания к лабораторной работе №1 « Автоматизированный априорный анализ статистической совокупности в среде MS Excel». / Г.П. Кожевникова, А.В. Голикова, А.М. Каманина, А.М. Бобров. Под ред. проф. Г.П. Кожевниковой- М.: Вузовский учебник, 2005.-72с.
-
Теория статистики: Учебник / Под ред. проф. Р.А. Шмойловой – 3-е изд., перераб. – М.: Финансы и статистика, 1999.- 560с.