169295 (625315), страница 4
Текст из файла (страница 4)
В ряде промышленных приборов реализован принцип ленточного транспортера. Элюат из колонки попадает на движущуюся ленту, которая проходит через обогреваемую ИК излучением камеру, где испаряется растворитель. Затем лента с веществом проходит через область, обогреваемую другим нагревателем, где испаряется анализируемое вещество, после чего оно поступает в ионный источник и ионизируется. Более эффективный способ сочетания высокоэффективного газо-жидкостного хроматографа и масс-спектрометра основан на электро- и термораспылении. В этом случае элюат пропускают через капилляр, нагретый до 150 °С, и распыляют в вакуумную камеру. Ионы буфера, присутствующие в растворе, участвуют в ионоооразовании. Образовавшиеся капли несут положительный, или отрицательный заряд. Вдоль капли из-за малого ее диаметра создается высокий градиент электрического поля, причем по мере распада капель этот градиент возрастает. При этом происходит десорбция из капель протонированных ионов или кластеров (молекула вещества + катион буфера).
Метод хромато-масс-спектрометрии используют при структурно-аналитических исследованиях в органической химии, нефтехимии, биохимии, медицине, фармакологии, для охраны окружающей среды и др. [16]
3. Использование хромато – масс – спектрометрии в идентификации загрязнителей природных сред
Возможности хромато-масс-спектрометрии по идентификации сточных вод и отходов накопителей промпредприятий были проверены на объектах г. Днепропетровска. С разной степенью вероятности в воде накопителя завода «Днепрпластмасс» идентифицировано 98 индивидуальных органических веществ, в воде накопителя ОАО «Днепрококс» – 71, в воде накопителя ОАО «Лакокрасочный завод» – 29. Перечень найденных веществ специфичен и отражает технологию производства.
Хромато-масс-спектрометрический анализ трех проб дренажных вод, отобранных в тоннеле метрополитена через 100 м, показал, что содержание органических веществ в них существенно различается. В одной пробе идентифицировано с вероятностью более 80% 30 индивидуальных веществ, в другой – одно, в третьей – три, что дало возможность говорить об отсутствии органической составляющей в дренажных водах на определенном участке метрополитена.
Определение летучих органических соединений в водных пробах выполняли методом парофазного статического анализа (headspase) на хромато-масс-спектрометре Agilent 6890/5973N GC-MS SYSTEM. 10 мл пробы помещали во флакон вместимостью 22 мл, содержащий 5 г безводного сульфата натрия, и герметично закрывали. Затем флаконы помещали в каретку парофазного пробоотборника и выполняли пробоподготовку при следующих параметрах: температура термостата пробоотборника 80 ºС, температура крана-дозатора – 90 ºС, температура интерфейса пробоотборника – газовый хроматограф – 110 ºС, время выдержки образца – 20 мин при интенсивном встряхивании, объем дозирования паровой фазы – 1 мл. Газохроматографический анализ выполняли на капиллярной колонке HP-5 в режиме программирования температуры, ввод пробы с делением потока в соотношении 1:80. Диапазон сканирования масс-спектрометрического детектора 45–270 а.е.м.
Анализ химического загрязнения окружающей среды методами хромато-масс-спектрометрии
Гузняева М.Ю., Туров Ю.П.
В последнее время органические вещества признаны определяющими весь ход гидрогеохимических процессов и техногенеза окружающей среды в целом. Основную часть общего органического загрязнения окружающей среды составляют загрязняющие вещества нефтяного происхождения – сырая нефть, разнообразные продукты ее переработки и отходы после неполного их использования. Вследствие шипрокой вариабельности состава нефтей, многочисленности источников поступления органических загрязняющих веществ в окружающую среду аналитическим методом для корректного количественного их определения в компонентах окружающей среды и установления источников загрязнения является хромато-масс-спектрометрия (ГХ-МС).
В докладе приведены результаты ГХ-МС анализов при исследовании состава и поведения органических загрязняющих веществ в компонентах окружающей среды – природных водах, донных отложениях и почвах юга Западной Сибири на территориях районов с максимальной техногенной нагрузкой. В результате проведенных работ установлено, что на территории работ основным фактором, определяющим распространение органических загрязняющих веществ, является атмосферный перенос. Показана однородность компонентного состава полициклических ароматических углеводородов (ПАУ) в донных осадках бассейна р. Томь, что свидетельствует о дальнем транспорте загрязняющих веществ на взвешенных частицах. Возможности ГХ-МС по определению изомерного состава ПАУ и использование для оценки химического загрязнения природной среды «бензпиренового эквивалента» (В.А. Коптюг, А.Г. Аншиц, А.Р. Суздорф и др., Химия в интересах устойчивого развития, 1997) показали сверхнормативные уровни загрязнения этими токсичными веществами водных объектов на территории Кемеровской и Томской областей.
По результатам ГХ-МС анализов сформирована региональная база данных по органическим примесям, содержащая сведения о более чем 500 химических соединений, идентифицированных методом хромато-масс-спектрометрии в природных водах, почвах, грунтах и донных отложениях.
Анализ воздуха рабочей зоны шпалопропиточных заводов методами ВЭЖХ и хромато-масс спектрометрии
Маковская Т.И., Кузьменко Л.П, Баженов Б.А., Аброськина З.В., Дьячкова С.Г.
В настоящее время для пропитки шпал и брусьев на шпалопропиточных заводах нашей страны применяют каменноугольное масло, нефтяной антисептик ЖТК, а также их смеси. При пропитке древесины и хранении готовой продукции происходит загрязнение окружающей среды токсичными и канцерогенными ароматическими углеводородами. Поэтому анализ воздуха рабочей зоны шпалопропиточных заводов (ШПЗ), несомненно, является важной производственной и экологической задачей.
На примере Тайшетского ШПЗ был впервые проведен анализ содержания токсичных и канцерогенных ароматических углеводородов (АУ) в воздухе рабочей зоны методами хромато-масс спектрометрии (ХМС) и высокоэффективной жидкостной хроматографии (ВЭЖХ). Концентрирование химических веществ из воздуха осуществлялось на сорбент «Силохром-120» с последующей термической десорбцией АУ или экстракцией последних диэтиловым эфиром. Методом ХМС [масс-селективный детектор Hewlett-Packard 5972A MSD, капиллярная колонка HP-5 MS (50 м)] показано наличие в воздухе бензола и его производных (толуол, изомеры ксилола и др.), нафталина, антрацена, аценафтена, дибензофурана, фенола, флуорена, хризена. Количественный анализ воздуха методом ВЭЖХ показал, что содержание АУ (антрацена, аценафтена, нафталина) в воздухе рабочей зоны превышает ПДК в два раза. Пробы воздуха отбирали на фильтры АФА-ХП-20. Анализ проводили на хроматографе «Милихром-4», фотометрическое детектирование (l 250 нм), стальная колонка 2х64 мм, сорбент Nucleosil, 100–5, C18, элюирование смесью метанола и (или) ацетонитрила с водой, скорость расхода элюента 0.07 мл/мин.
Продукты пирогинетической переработки скорлупы кедровых орехов
Колосова Н.Н., Оффан К.Б., Качин С.В., Ефремов А.А.
Все возрастающие темпы переработки кедровых орехов в Сибири требуют решения вопросов крупнотоннажной утилизации образующихся отходов с получением широкого ассортимента получаемых продуктов. В связи с этим в данной работе методом ГЖХ, ХМС и химического анализа изучен состав жидких, твердых и газообразных продуктов термического расщепления лигноуглеводного комплекса исходного сырья. Выход основных продуктов пиролиза представлен в табл.
Таблица. Выход продуктов пиролиза скорлупы кедровых орехов (% масс. от а.с.н.).
| Продукты пиролиза | Температура пиролиза, оС | |||||||
| 100 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | |
| Твердый остаток | 100 | 93,4 | 80,9 | 42,6 | 40,7 | 36,2 | 35,6 | 34,6 |
| Жидкие продукты | - | 5,5 | 16,7 | 49,2 | 41,7 | 40,2 | 37,9 | 36,0 |
| среди них: | ||||||||
| органические водорастворимые продукты | - | - | 3,45 | 8,57 | 7,12 | 5,46 | 4,22 | 3,69 |
| отстойная смола пиролиза | - | - | - | 5,27 | 6,80 | 10,68 | 11,79 | 13,02 |
| пирогинетическая вода | - | 5,5 | 13,3 | 35,4 | 27,8 | 24,1 | 21,9 | 19,3 |
| Газы пиролиза | - | 1,1 | 2,4 | 8,2 | 17,6 | 23,6 | 26,5 | 29,4 |
| среди них: | ||||||||
| СО | - | - | 0,21 | 2,09 | 5,93 | 8,18 | 10,00 | 11,85 |
| СО2 | - | - | 2,23 | 6,12 | 11,4 | 14,4 | 14,5 | 14,6 |
| СН4 | - | - | - | - | 0,20 | 1,03 | 2,02 | 2,97 |
Твердый остаток пиролиза – древесный уголь, образующийся в количестве 34,6% от исходной навески при температуре 500 оС, имеет зольность 1,92%, истинную плотность – 1,42 г./см3, пористость – 68% и объем пор – 1,4 см3/г, что практически соответствует древесным углям, получаемым при пиролизе древесины различных пород.
Укажем также, что отстойная смола пиролиза может быть с успехом использована в качестве модификатора нефтяного битума при получении органоминеральных композиционных материалов, а газы пиролиза – как исходное сырье для синтеза углеводородов в реакциях Фишера-Тропша.
Анализ и идентификация продуктов синтетического и природного происхождения
Черняк Е.И., Морозов С.В., Вялков А.И., Зуева О.А., Коллегов В.Ф.
В настоящее время, когда на рынке появляется огромное многообразие различных промышленных и продовольственных продуктов синтетического и природного происхождения, актуальным являются анализ их состава, идентификация компонентов и выявление принадлежности анализируемого объекта к определенной группе и производителю. Изучение качественного и количественного состава различных объектов является основной частью фундаментальных и прикладных исследований в области экологии, разработки новых технологий, продуктов и материалов.
Применение современных высокоинформативных методов газовой, жидкостной хроматографии и хромато-масс-спектрометриии в сочетании с эффективным метрологическим и информационным обеспечением позволяет существенно повысить достоверность аналитических данных по анализу и идентификации материалов и продуктов.
На основании исследования биологически активных веществ, эфирных масел, продуктов лесохимических и нефтехимических производств, масложировой и спиртосодержащей продукции, разработаны подходы, методики и рекомендации по анализу и идентификации органических веществ, продуктов и материалов природного и синтетического происхождения, включающие
– методы пробоподготовки,
– выявление характерных признаков анализируемого объекта,
– идентификацию объекта.
Разработанные подходы использованы для установления фактов фальсификации и контрафакции продуктов и материалов.
Влияние влажности на детектирование ароматических углеводородов и других классов веществ в воздухе с помощью масс-спектрометрии с химической ионизацией при атмосферном давлении.
А.С. Кудрявцев, А.Л. Макась, М.Л. Трошков
Масс-спектрометрия с химической ионизацией при атмосферном давлении (МС ХИАД) является одним из перспективных методов детектирования веществ в газовой фазе. В ходе ион-молекулярных реакций образуются ион-реактанты, которые участвуют в реакциях образования ионов анализируемых веществ. Использование различных ион-реактантов позволяет изменять селективноность детектирования одних классов веществ, по отношению к другим.















