166598 (625053), страница 2

Файл №625053 166598 (Силикагель и его применение в высокоэффективной жидкостной хроматографии) 2 страница166598 (625053) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Особый интерес для теории формирования пористой структуры силикагеля представляет гипотеза Планка [4]. Как и многие другие исследователи, Планк предполагает, что в основе гелеобразования кремниевой кислот лежит реакция конденсации с образованием кислородных мостиков между атомами кремния. Однако этой реакции предшествует промежуточная стадия образования водородных связей. Картина гелеобразования с такой точки зрения представляется следующим образом. На первой стадии образуются мицеллы (первичные частицы сферической формы), состоящие из коротких цепей SiO2, соединенных между собой в трехмерную пространственную сеть. При этом предполагается, что связи, соединяющие короткие цепи в мицелле, представляют собой водородные связи (нитрамицеллярные связи):


Мицеллы соединяются в цепи во время коагуляции посредством водородных связей через молекулы воды, образуя структуру (интермицеллярные связи):


Влияя на прочность обоих видов связей на стадиях застудневания, синерезиса и промывки гидрогеля, можно управлять размерами первичных частиц и мицеллярных цепей и, следовательно, структурой силикагеля. Так, любой фактор, вызывающий разрыв водородных связей между мицеллами (пептизация интермицеллярных связей), приводит к образованию коротких мицеллярных цепей. В результате они ориентируются в более плотную упаковку, и получается мелкопористый силикагель. В том же направлении влияет пептизация интрамицеллярных связей, приводя к уменьшению размеров частиц. Таким образом, Планк и Дрейк [4] пришли к заключению, что пористая структура силикагеля определяется размерами и плотностью упаковки составляющих гель частиц.

Обобщая изложенное, основные положения корпускулярной теории строения силикагеля можно сформулировать следующим образом:

  • полимеры, вырастающие при конденсации кремневой кислоты в виде цепочек и сеток кремнекислородных тетраэдров, срастаются в частицы шаровидной формы;

  • эти частицы не теряют своей индивидуальности на стадиях превращения золь гель силикагель;

  • силикагели представляют собой систему соприкасающихся шаровидных частиц, размеры и плотность упаковки которых зависят от способа приготовления;

  • пористость определяется размерами и плотностью упаковки составляющих силикагель частиц.

Геометрическая структура силикагеля не является единственным фактором, определяющим его адсорбционную активность. При этом важную роль играет химическая природа его поверхности, которую можно варьировать термической дегидратацией, проведением на поверхности силикагеля самых различных реакций, дающих новые соединения. К таким реакциям относятся алкоксилирование, хлорирование, взаимодействие поверхности силикагеля с алкил- и арилхлорсиланами и т.д.

Придание силикагелю специфичности в отношении адсорбции тех или иных веществ значительно расширяет области его применения. В связи с этим перспективным является химическое модифицирование силикагелей органическими радикалами с различными функциональными группами.

1.3 Химически модифицированные силикагели

Адсорбционные свойства силикагелей наряду с геометрией структуры и пористостью в значительной степени зависят от химической природы их поверхности.

Поверхность силикагелей покрыта гидроксильными группами. Адсорбционные и другие свойства силикагелей зависят от количества и концентрации на их поверхности гидроксильных групп. Изменение химической природы поверхности силикагелей в результате термической дегидратации, регидратации или вследствие замещения гидроксилов на различные атомы или органические радикалы вызывает резкое изменение адсорбционных и технологических свойств силикагеля.

В связи с тем, что электронная d-оболочка кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности силикагеля таково, что в них отрицательный заряд сильно смещен к атому кислорода, а атом водорода частично протонизирован, образуя протонный кислотный центр [12]. Это обеспечивает специфическое взаимодействие поверхности силикагеля со связями или звеньями молекул, обладающих сосредоточенной на периферии электронной плотностью [12]. Поэтому естественно, что при частичном или полном замещении гидроксильных групп силикагеля атомами фтора или органическими радикалами, благодаря выключению из адсорбционного процесса всех или части гидроксилов, наблюдается уменьшение адсорбции веществ, у которых в адсорбционном взаимодействии играет роль донорно-акцепторная компонента.

Модифицирование поверхности силикагелей органическими радикалами с четко выраженными основными или кислотными свойствами приводит к получению специфических адсорбентов, избирательно поглощающих вещества кислотного или основного характера, для которых такие радикалы являются активными центрами адсорбции. Характер адсорбционных свойств модифицированных силикагелей с функциональными группами определяется как размерами радикалов, так и его химическими свойствами.

Одним из направлений применения химически модифицированных силикагелей в химическом анализе является ВЭЖХ.

1.4 Использование сорбентов на основе силикагеля в хроматографических методах анализа

Хроматография это метод разделения компонентов смеси, основанный на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна. Чем сильнее сродство компонента к неподвижной фазе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компоненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержатся в начале пути, другие продвинутся дальше. В хроматографическом процессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) аспекты.

Различные методы хроматографии можно классифицировать по агрегатному состоянию фаз, механизму разделения, аппаратурному оформлению процесса (по форме) и по способу перемещения подвижной фазы и хроматографируемой смеси [13].

По агрегатному состоянию фаз различают жидкостную и газовую хроматографию.

По технике выполнения хроматографию подразделяют на колоночную (разделение веществ проводится в специальных колонках) и плоскостную: тонкослойную и бумажную. В тонкослойной хроматографии разделение проводится в тонком слое сорбента, в бумажной на специальной бумаге.

Хроматография как метод была открыта в 1903 г. русским ученым-ботаником М.С. Цветом, который использовал для разделения растительных пигментов на их составляющие колонки, заполненные порошком мела [14]. При вымывании пигментов петролейным эфиром они перемещались вдоль колонки, разделяясь при этом на кольца разного цвета. Метод оказался очень удобным и был позднее назван Цветом хроматографией (цветописью).

Отправной точкой бурного развития многих методов хроматографического анализа является работа лауреатов Нобелевской премии A. Мартина и Р. Синджа. Ими был предложен и разработан метод распределительной хроматографии (1941 г.). В 1952 г. А. Мартином и Л. Джеймсом были получены первые результаты в области газожидкостной хроматографии. Эти работы вызвали огромное число исследований, направленных на развитие метода газовой хроматографии.

За короткое время были усовершенствованы конструкции систем ввода проб, созданы чувствительные детекторы. Метод газовой хроматографии первый из хроматографических методов, получивших инструментальное обеспечение. Если в 50-е и 60-е годы методы хроматографии в тонких слоях (бумажная и тонкослойная) в значительной мере заменили колоночную как более быстрые, удобные и простые, то 70-е годы характеризуются гигантским прогрессом именно высокоэффективной (инструментальной) жидкостной хроматографии, где для ускорения процесса хроматографирование проводят под давлением.

ВЭЖХ в настоящее время не только в большой мере вытеснила классическую колоночную, бумажную и тонкослойную хроматографию (далее по тексту ТСХ), но и обогнала газовую хроматографию по темпам развития. Быстрый рост применения ВЭЖХ связан с освоением и серийным выпуском как отдельных узлов (насосов, инжекторов, детекторов), так и комплектных жидкостных хроматографов. Немалую роль сыграли также разработка теоретических основ ВЭЖХ, организация выпуска высокочистых растворителей и химикатов для ВЭЖХ. Особенно следует отметить организацию выпуска узкодисперсных сорбентов зернением от 3 до 10 мкм на основе силикагеля, в том числе и с химически привитыми неподвижными фазами, и разработку способов заполнения ими высокоэффективных колонок для ВЭЖХ [15].

Причин быстрого развития ВЭЖХ несколько. Прежде всего, следует назвать большой диапазон молекулярных масс веществ, с которыми можно работать: от нескольких единиц до десятков миллионов, что существенно шире, чем в газовой хроматографии. Кроме того, мягкость условий ВЭЖХ (почти все разделения можно проводить при температурах, близких к комнатной, при отсутствии контакта с воздухом) делает ее особенно пригодным, а зачастую единственным методом исследования лабильных соединений, в частности, биологически активных веществ и биополимеров [17].

Среди разнообразных методов анализа ВЭЖХ отличается самой высокой степенью информативности благодаря одновременной реализации функций разделения, идентификации и определения; избирательностью; низким пределом обнаружения, а также возможностью автоматизации и компьютеризации процесса разделения, обнаружения и количественного определения. Хроматографический метод анализа универсален и применим к разнообразным объектам исследования (нефть, лекарственные препараты, вещества растительного и животного происхождения, биологические жидкости, пищевые продукты и др.) [17].

По механизму разделения анализируемых или разделяемых веществ ВЭЖХ делится на: адсорбционную; распределительную; ионообменную; эксклюзионную [17].

В адсорбционной хроматографии разделение веществ, входящих в смесь и движущихся по колонке в потоке растворителя, происходит за счет их различной способности адсорбироваться и десорбироваться на поверхности адсорбента с развитой поверхностью [17, 18].

В распределительной ВЭЖХ разделение происходит за счет разной растворимости разделяемых веществ в неподвижной фазе, как правило, химически привитой (модифицированной) к поверхности неподвижного носителя, и подвижной фазе растворителе. Этот метод разделения наиболее популярен, особенно в случае, когда привитая фаза представляет собой неполярный алкильный остаток от C8 до C18, а подвижная фаза более полярна, например смесь метанола или ацетонитрила с водой. Этим вариантом, так называемой обращенно-фазной (или обратно-фазной, или с обращением фаз) хроматографии в настоящее время проводят около двух третей разделений в ВЭЖХ. Термин «обращенно-фазная ВЭЖХ» произошел от обратного, по сравнению с таковым в классическом адсорбционном варианте, соотношения полярности сорбента и растворителя: полярный сорбент и неполярная подвижная фаза для адсорбционной и, наоборот, неполярный сорбент и полярная подвижная фаза для обращенно-фазного варианта распределительной хроматографии [17].

В ионообменной хроматографии молекулы веществ смеси, диссоциировавшие на катионы и анионы в растворе, разделяются при движении через сорбент, на поверхности которого привиты катионные или анионные центры, способные к обмену с ионами анализируемых веществ за счет их разной скорости обмена [19].

В эксклюзионной (ситовой, гель-проникающей, гель-фильтрационной) хроматографии молекулы веществ разделяются по размеру за счет их разной способности проникать в поры носителя. При этом первыми выходят из колонки наиболее крупные молекулы (наибольшей молекулярной массы), способные проникать в минимальное число пор носителя. Последними выходят вещества с малыми размерами молекул, свободно проникающие в поры сорбента [17].

Большинство проводимых методом ВЭЖХ разделений основано на смешанном механизме взаимодействия веществ с сорбентом, обеспечивающим большее или меньшее удерживание компонентов в колонке.

Сорбенты, используемые для ВЭЖХ, делят на несколько групп, каждая из которых, в свою очередь, подразделяется на типы. Общепринятым является разделение сорбентов на группы по химической природе матрицы (основы) сорбента, а по типам по методу химической обработки матрицы, делающей ее пригодной для использования в определенном виде хроматографии.

Характеристики

Тип файла
Документ
Размер
8,26 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее