166588 (625052), страница 3

Файл №625052 166588 (Свойства азота) 3 страница166588 (625052) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

N2 + O2 = 2NO

который при охлаждении легко окисляется далее до оксида (IV) NO2. В воздухе оксиды Азота образуются при атмосферных разрядах. Их можно получить также действием на смесь Азота с кислородом ионизирующих излучений. При растворении в воде азотистого N2O3 и азотного N2O5 ангидридов соответственно получаются азотистая кислота HNO2 и азотная кислота HNO3, образующие соли - нитриты и нитраты. С водородом Азот соединяется только при высокой температуре и в присутствии катализаторов, при этом образуется аммиак NH3. Кроме аммиака, известны и другие многочисленные соединения Азот с водородом, например гидразин H2N-NH2, диимид HN=NH, азотистоводородная кислота HN3(H-N=N≡N), октазон N8H14 и другие; большинство соединений Азота с водородом выделено только в виде органических производных. Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3 (фтористый азот NF3 - при взаимодействии фтора с аммиаком), а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3).. Как правило, галогениды Азота - малостойкие соединения (за исключением NF3); более устойчивы оксигалогениды Азота - NOF, NOCl, NOBr, NO2F и NO2Cl. С серой также не происходит непосредственного соединения Азот; азотистая сера N4S4 получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскаленного кокса с Азот образуется циан (CN)2. Нагреванием Азота с ацетиленом С2Н2 до 1500°С может быть получен цианистый водород HCN. Взаимодействие Азота с металлами при высоких температурах приводит к образованию нитридов (например, Mg3N2).

При действии на обычный Азот электрических разрядов [давление 130-270 н/м2 (1-2 мм рт. cт.)] или при разложении нитридов В, Ti, Mg и Са, а также при электрических разрядах в воздухе может образоваться активный Азот, представляющий собой смесь молекул и атомов Азота, обладающих повышенным запасом энергии. В отличие от молекулярного, активный Азот весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.

Азот входит в состав очень многих важнейших органических соединений (амины, аминокислоты, нитросоединения и других).

Из-за высокой прочности молекулы N2 процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена) при нагревании, ударах и т. д. приводят к образованию молекул N2. Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.

Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития Li3N. В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует азотистоводородную кислоту HN3. Соли этой кислоты — азиды. Азид свинца Pb(N3)2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов. Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые — при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI3 взрывается:

2NI3 = N2 + 3I2.

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами. При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2, которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:

Са3N2 + 6H2O = 3Ca(OH)2 + 2NH3.

Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N. При нагревании азота с ацетиленом C2H2 может быть получен цианистый водород HCN. Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3, ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты. Поэтому реакции присоединения одного атома H или молекулы H2 к N2 сильно эндотермичны:

H + N2=N2H (87,8 кДж/моль)

H2 + N2=N2H2 (204,8 кДж/моль)

Отсюда следует, что гидрирование N2 не может происходить через стадию образования диимида (HN=NH), в то время как в случае ацетилена аналогичные реакции сильно экзотермичны:

H + С2H2=C2H3 (- 167,2 кДж/моль)

H2 + С2H2=C2H4 (- 175,5 кДж/моль)

Итак, энергетические характеристики N2 из-за особенностей его электронного строения делают его нереакционноспособным в реакциях с кислотами и основаниями, электрофильными (R+, AlCl3) и нуклеофильными (H-, R-, OR-) реагентами и даже с атомом H.

До 1964 года считали маловероятной возможность создания каталитических систем для фиксации азота, работающих в более мягких условиях, чем катализаторы процесса Габера-Боша, и более простых по структуре, чем ферменты. Вместе с тем известные в то время методы активации инертной молекулы CO комплексами переходных металлов, аналогии с активацией типичной тройной связи в алкинах и известные данные о наличии переходных металлов (Mo, V, Fe) в активных центрах нитрогеназ позволяли надеяться на возможность использования более слабых восстановителей, чем Li, при использовании комплексов переходных металлов в качестве активаторов азота [13].

Восстановление N2 в апротонных и протонных средах

В 1964 году М.Е. Вольпин и В.Б. Шур опубликовали первое сообщение о возможности восстановления N2 в апротонных средах (эфиры, углеводороды) в мягких условиях в присутствии комплексов переходных металлов [4] (реакция Вольпина-Шура). Использовали системы, аналогичные катализаторам полимеризации олефинов, открытым К. Циглером и Дж. Натта [5]: MLn - восстановитель. Среди переходных металлов активностью в реакции с N2 обладают соединения Mo(III), Cr(III), Ti(IV), Fe(III), W(VI), Mn(II), Co(II), Zr(IV) и Nb(IV). В качестве восстановителей использовали RMgBr, AlR3 , RLi, LiAlH4 , Mg, Na, K и Al. Реакции протекают стехиометрически по переходному металлу при комнатной температуре и давлении азота от 0,1 до 15 МПа. Например, система Cp2TiCl2-EtMgBr (Cp = C5H5) восстанавливает азот при комнатной температуре и атмосферном давлении с образованием 0,7 молей NH3 на 1 г-атом Ti. Первичным продуктом реакции является нитридный комплекс титана (Ti-N<), гидролиз которого дает аммиак. В системе TiCl3-Mg в тетрагидрофуране (ТГФ) при 0,1 МПа за 2-3 ч получается 1 моль NH3 на 1 г-атом Ti. Было установлено, что в зависимости от природы металла, восстановителя и условий процесс может не доходить до нитрида и останавливаться на интермедиате, гидролиз которого дает гидразин. Таким образом, общая схема восстановления может быть представлена следующей последовательностью реакций:

Если связь Ti-N в нитридном интермедиате разорвать с помощью апротонной кислоты, процесс может стать каталитическим по переходному металлу. Наиболее простая каталитическая система TiCl4-AlBr3-Al при 10 МПа и 130?C производит 286 молей NH3 на моль TiCl4 (после гидролиза образующихся нитридов алюминия). Реакцию можно проводить в бензоле или расплаве AlBr3 . Суммарный процесс восстановления N2 описывается уравнением (8) и катализируется Ti(II), полученным восстановлением TiCl4 :

N2 + 2Al + 4AlBr3=2[N(AlBr2)3] [5]

Следующая важная страница в химии молекулярного азота была открыта А.Е. Шиловым и его сотрудниками в 1970 году. Были обнаружены реакции восстановления азота до гидразина и аммиака в водных или водно-спиртовых средах (в протонных средах). Катализаторами реакций восстановления в этих гетерогенных системах служат Mo(III) и V(II), а восстановителями - Ti(III), Cr(II) и V(II). Система V(OH)2-Mg(OH)2 стехиометрически при pH > 10 (25?C и = 0,1 МПа) восстанавливает азот по реакции

4V(OH)2 + 4H2O + N2=4V(OH)3 + NH2NH2

Изучена и гомогенная система V(OH)2 - пирокатехин (pH = 10). Интересно, что сам гидроксид Mo(OH)3 не восстанавливает N2 без участия Ti(OH)3 или Cr(OH)2, которые без Mo(III) также неспособны восстанавливать N2 . Установлено, что в присутствии амальгамы натрия в системе Mo(III)-Ti(OH)3 параллельно образуются NH3 и гидразин [1,2,3].

Механизм восстановления N2

Не вызывает сомнений образование первичных комплексов N2 с соединениями переходных металлов, участвующих в его активации в апротонных и протонных средах. В 1965 году Аллен и Зеноф действием гидразина на RuCl3 получили первый диазотный комплекс [Ru(NH3)5N2]Cl2 . В 1966 году А.Е. Шилов, А.К. Шилова и Ю.Г. Бородько впервые показали, что такие комплексы могут образоваться непосредственно из N2 [3]. Устойчивые комплексы с N2 получены в настоящее время с соединениями Ti, Zr, Nb, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni. В большинстве случаев комплексы азота являются s-комплексами:

Частота валентных колебаний N-N понижена в комплексах на 140-240 см- 1, длина связи N-N увеличена, но незначительно. Известен комплекс Ni(0), в котором молекула азота расположена перпендикулярно к линии Ni-Ni (Ni2N2 образует искаженный тетраэдр) {[(PhLi)3Ni]2N2 " 2Et2O}2 . В этом комплексе N2 сильно восстановлен (длина связи N-N 1,35 Б является промежуточной между длинами N-N и N=N связей).

Среди комплексов молекулярного азота имеются устойчивые моно- и биядерные комплексы, в которых координированная молекула N2 не взаимодействует с восстановителями и электрофильными реагентами (Ru, Rh, Ir, Os, Re - тип А). В устойчивых моноядерных комплексах типа Б (WL4(N2)2 и MoL4(N2)2) N2 реагирует с электрофильными частицами HX, RCOX. В малоустойчивых биядерных комплексах Ti(III) и Ti(II) (типа В) молекула N2 легко реагирует с восстановителями и электрофильными частицами (H+, комплексы Ti(II)) с образованием гидразина и аммиака. К этой группе относятся, вероятно, и еще не выделенные комплексы Mo(III) и V(II).

Как следует из табл. 1, наиболее существенным для активации азота является перенос электрона (или электронов) на разрыхляющие орбитали молекулы N2 . Именно этот процесс переноса электронов с металла на N2 и наблюдается в первичных комплексах LnM-N2 или LnMNNMLn . Комплексы металлов, способных к эффективному переносу электронов на молекулярный азот, и являются наиболее эффективными восстановителями и катализаторами восстановления N2 (комплексы типа Б и В). Вследствие переноса электронов на N2 в комплексе основность координированной молекулы азота возрастает. Из-за высокой энергии разрыва первой связи в молекуле N2 одно- и двухэлектронное восстановление азота требует очень сильных восстановителей. Так, для образования N2H2 требуется восстановитель с потенциалом > - 1,1 В (pH = 0) и > - 1,5 В (pH = 7). И это в протонных средах, где энергетические требования к восстановителю ниже, чем в апротонных. Если процесс восстановления будет многоэлектронным (четырехэлектронным), то можно использовать более слабые одно- и двухэлектронные восстановители (А.Е. Шилов, Г.И. Лихтенштейн, 1970). Таким образом, частичное восстановление азота в биядерном комплексе и образование связей M-N

M-N=N-M или M=N-N=M

или восстановление азота в одноядерном комплексе в результате образования связей M-X и N-E (E - электрофил)

X-M-N=N-E

позволяет компенсировать энергии разрыва связей в молекуле азота.

Детальный механизм реакции Вольпина-Шура в апротонных средах установлен для реакций Cp2TiCl2 (или Cp2TiCl) с RMgX [4, 6].

Основные черты механизма, в котором комплекс (I) есть производное диазена Cp2TiIII-N=N-TiIIICp2 , комплекс (II) - производное гидразина , а комплекс (III) - нитридное производное Cp2Ti-N(MgCl)2 . Магнийорганическое соединение в этих реакциях выполняет роль одноэлектронного восстановителя.

Восстановление азота в комплексах типа Б происходит в результате атаки азотного лиганда, на котором повышена электронная плотность за счет переноса электронов с металла, протоном (НХ) или другим электрофилом E(EX) (окислительное присоединение к металлу) [5].

Восстановление N2 в протонных средах в реакциях с относительно слабыми восстановителями (TiIII, VII) происходит, по мнению А.Е. Шилова [3], через

биядерные комплексы типа M-N=N-M (IV), M=N-N=M (V) в результате образования четырехядерных комплексов (VI) из (IV) или протонирования (V) до (VII).

Биологическая фиксация N2

Изучение механизмов активации и восстановления азота в растворах комплексов переходных металлов, несомненно, очень важно для понимания механизма действия фермента нитрогеназы и создания химических моделей этого фермента. В этой связи очень интересны последние достижения в изучении структуры окислительно-восстановительных центров фермента.

Фермент нитрогеназа содержится в нескольких видах микроорганизмов. Фермент, выделенный из Azotobacter vinelandii, состоит из двух белков с молекулярной массой 240 000 и ~ 60 000Da. Первый белок (тетрамер из четырех белковых глобул) содержит атомы Mo и Fe в редокс-центрах (MoFe-белок). Второй белок (димер из двух белковых глобул) содержит только атомы железа в виде сульфидного кластера Fe4S4 (Fe-белок). Кластер соединен с белковой молекулой четырьмя тиольными (RS) группами аминокислотных остатков цистеина (Cys). В MoFe-белке имеются два окислительно-восстановительных центра: MoFe-кофактор (активный центр фермента) и P-кластер, содержащий два кубаноподобных кластера Fe4S4, соединенных двумя Cys-группами. Недавно на основании кристаллографических исследований MoFe-белка нитрогеназы из Azotobacter vinelandii предложена структура этих двух центров. Структура кофактора (без дополнительных лигандов) приведена на рис. 1, а. Короткие расстояния Fe_Fe (~ 2,5 Б) между двумя кластерами Fe4S3 и Fe3MoS3 , связанными двумя сульфидными мостиками и третьим лигандом (Y), говорят о возможности взаимодействия Fe_Fe. Предполагается, что три слабые Fe_Fe-связи могут разорваться при взаимодействии с N2 и молекула N2 может быть включена во внутреннюю полость кофактора, замещая связи Fe_Fe связями Fe_N. В таком комплексе создаются условия для переноса нескольких (4, 6) электронов на азот от восстановителя через P-кластер. Атом Mo в рамках этой модели является одним из источников электронов. Очевидно, что Mo не обязательный участник восстановления N2 , поскольку известны и другие нитрогеназы, в которых атом Mo замещен атомами ванадия или железа. Процесс восстановления N2 на молибденсодержащих нитрогеназах включает три основных этапа переноса электронов:

1) восстановление Fe-белка донорами электронов (ферредоксином в клетке или дитионитом Na2S2O4 в колбе);

2) перенос электронов с восстановленного Fe-белка (через P-кластер) на MoFe-белок. Этот процесс зависит от гидролиза магниевой соли аденозинтрифосфата (MgАТФ) до аденозиндифосфата (MgАДФ);

3) перенос электронов на N2 (или другой субстрат), связанный с кофактором.

Характеристики

Тип файла
Документ
Размер
6,2 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее