166385 (624998), страница 2

Файл №624998 166385 (Новые современные коагулянты в технологии очистки сточных вод) 2 страница166385 (624998) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

AI (OH)3 + 3H+ = AI3+ + 3 H2O

AI (OH)3 + OH- = AIO-3 + 2H2O

Гидроксид алюминия практически не растворим в дистиллированной воде, однако растворимость его в сточных водах может быть большей.

На рисунке 2 представлены данные по растворимости гидроксидов алюминия и железа в зависимости от рН [8].

Из рисунка 1 видно растворимость А1 (ОН)3 в сточной воде выше чем в дистиллированной. Растворимость гидроксида алюминия резко возрастает в пределах 4,5 > рН > 8.

С увеличением температуры растворимость гидроксида алюминия снижается. Зависимость растворимости гидроксида алюминия в воде от температуры при различных рН на рисунке 2.

Рис. 2 Зависимость растворимости Гидроксида алюминия от температуры при различных рН

Для быстрого и полного протекания процесса гидролиза не обходим некоторый щелочной резерв воды для связывания ионов водорода выделяющих при гидролизе этим щелочным резервом могут быть бикарбонат – ионы, 3 присутствующие в воде, или специально введенные щелочные реагенты – известковое молоко, кальцинированная или каустическая сода [3,16].

В результате применения сульфата алюминия увеличивается степень сточной воды.

Очень перспективным коагулянтом является оксихлорид алюминия А12(ОН)5С1. В Японии этот коагулянт применяется с 1966 г. Он получается из гидроксида алюминия и соляной кислоты. Основные преимущества оксихлорида алюминия, по сравнению с глиноземом – большое содержание алюминия в продукте, меньшее снижение щелочности воды и меньшее повышение ее солесодержания. Оксихлорид имеет более сильное коагуляционное действие и большую скорость хлопьеобразования Хорошо растворяется в воде.

Для рекуперации белковых веществ из сточных вод рекомендуется использовать в качестве коагулянта лигносульфонат алюминия, получаемый из лигносульфоната натрия или путем ионообменной реакции.

В качестве коагулянтов могут быть применены алюмокалиевые квасцы [А1К(SО4)2*12NаОH] или алюмоаммонийные квасцы [А1 (NН4) (S04)2*12Н2O], имеющие меньшую стоимость и менее дефицитные, чем глинозем. Следует отметить, что при использовании алюмоаммонийных квасцов и наличии в очищаемой воде свободного хлора наблюдалось образование токсичных хлораминов.

Дешевыми коагулянтом является хлорид алюминия, который получают на нефтехимических комбинатах термическим гидролизом каталитического комплекса отработанного хлорида алюминия, применяемого в процессах изомеризации и при производстве этилбензола. Показана возможность использования этого коагулянта для очистки сточных вод производства синтетического спирта.

Известен коагулянт на основе алюминия, так называемый гидрокарбоалюминат кальция в виде однородного порошка серо-белого цвета. Гидрокарбоалюминат кальция получают как попутный продукт производства глинозема способом гидрохимического синтеза кальция из щелочно-карбоалюминатных растворов и извести при комплексной переработке нефелинов. Недостатками этого коагулянта – гидрокарбоалюмината кальция – являются высокая его стоимость и дефицитность, поскольку для его получения в качестве минерала используют нефелин, более редко встречающийся в природе, чем, например, бокситы, что и сказывается на его высокой стоимости.

2.2 Соли железа

Сульфат железа (11) или железный купорос FeSO4*7Н2О. Железный купорос представляет собой прозрачные кристаллы зеленого цвета. Под действием кислорода воздуха двухвалентное железо окисляется в трехвалентное приобретают бурый оттенок. В воде растворяется 265 г./л железного купороса при 20°С.

Растворимость гидроксида железа (II) в воде приведена на рис. 1, из которого видно, что этот коагулянт может применяться при рН > 9–10. Для уменьшения концентрации растворенного гидроксида железа (II) при более низких величинах рН производят окисление двухвалентного железа в трехвалентное. Процесс окисления осуществлять за счет растворенного в воде кислорода: 4FeSO4 + O2 + 2H2O = 4Fe(OH)3.

Для окисления железа может быть использован метод хлорирования. Расход хлора при составляет 0,24 мг на 1 мг FeSO4.

Положительное качество солей железа как коагулянтов – высокая плотность гидроксида (3,6 г/см3), обеспечивающая получение плотных, тяжелых хлопьев оседающих с большой скоростью.

Коагуляция с использованием солей железа неприемлема для сточных вод, содержащих фенолы, так как образующиеся растворимые в воде феноляты железа интенсивно окрашены. Кроме того, гидроксид – железа является катализатором, способствующим окислению некоторых органических веществ и образующим комплексные окрашенные соединения, растворимые в воде.

Хлорид железа (III). FeCI3 * 6Н2O представляет собой темные кристаллы с металлическим блеском, очень гигроскопичен.

С целью повышения эффективности очистки сточных вод предложено использовать коагулянт, состоящий из смеси растворов сульфата алюминия и хлорида железа в соотношении 1: 1 (по массе). Преимущества смешанного коагулянта повышение эффективности очистки воды при низких температурах и улучшение седиментационных свойств хлопьев.

Однако трудности, связанные с хранением и приготовлением коагулянта, а также возможность повышения содержания железа в очищенной воде при нарушениях технологического процесса, ограничивает применение смешанного коагулянта.

2.3 Соли магния

Хлорид магния предложено использовать для очистки сточных вод производства полистирольных пластмасс, а также вод, загрязненных эмульгированными маслами. Очистка производится при рН = 11,0. Растворимость гидроксида магния в воде при 200С – 9 мг/л – плотность – 2,4 г/см3. С. Уменьшением величины рН растворимость гидроксида магния в воде увеличивается.

Использование солей магния позволяет сократить продолжительность хлопьеобразования. Снижение температуры очищаемой воды практически не уменьшает эффективности ее очистки. В качестве коагулянтов могут быть использованы сульфат магния (МgSO4*7Н2О) и хлорид магния (МgС12 * 6Н2О).

Для очистки сточных вод может быть использован известковый шлам с добавлением карбоната магния. При этом происходит осаждёние Мg(ОН)2 и СаСО3. Преимущества этого метода: вода в процессе очистки практически не загрязняется минеральными солями, имеется возможность регенерации Мg из осадка путем обработки его диоксидом углерода образованием растворимого в воде бикарбоната магния который может быть повторно использован[5].

3. Современные новые коагулянты, способы их получения и применения

3.1 Алюмосиликатный раствор

В химической промышленности сточные воды обрабатывают при постоянном перемешивании алюмосиликатным раствором отношением А12: SiO2. В качестве реагента также используют раствор нефелина в 12% серной кислоте или раствор кислой сточной воде с рН 2.2

Этот способ коагуляционной очистки относится к обработки сточных вод химической промышленности от ионов железа, меди, никеля, кобальта, титана, фосфора, алюминия, кремния, кальция, магния, цинка, хрома, марганца, радиоактивных элементов, красителей, коллоидных частиц, органики, шламов, илистых частиц, взвесей, жировых и масляных эмульсий.

Очистка сточных вод от ионов тяжелых металлов проводится путем введения смеси высокодисперсного железа и угольного порошка при массовом отношении компонентов 1:0,05 – 0,1. Однако недостатком способа является необходимость специального приготовления реагентов и недостаточная степень выделения ионов тяжелых металлов из разбавленных растворов.

Применяется очистка от никеля путем введения в раствор каустического магнезита и проведения процесса при температуре 80–85°С. Минусом этой коагуляционной очистки является большой избыток магнезита (в 58–74 раза) по отношению к никелю и необходимость дополнительных энергозатрат при осуществлении процесса [8,9].

3.2 Коагулянт из красного шлама

В 1997 в технологии очистки сточных вод был получен коагулянт из красного шлама. Сущность изобретения: красный шлам глиноземного производства обрабатывают 3–5% соляной кислотой. Полученный твердый остаток обрабатывают 50–55% серной кислотой. Полученную пульпу фильтруют и к полученному раствору добавляют концентрированную серную кислоту до ее общего содержания в растворе 25–50%. Полученный раствор выдерживают 10–20 ч. и отделяют полученный осадок. Осадок представляет собой неорганический коагулянт, содержащий компоненты в мас.%: смесь А12(SO4)3*nН2О, где n=6, 12, 14 и А12(SO4)32SO4 *12Н2O в пересчете на А12O3-2–10, FеSO4* Н 2O в пересчете на Fе2O3 – 2–10, Н 2SO4 общая – 40–60 (в том числе Н24 свободная-20–40) и Н2O кристаллизационная до 100%. Полученным коагулянтом обрабатывают щелочные сточные воды [9,11]. Примерные результаты обработки сточных вод приведены в таблице 2

Таблица 2 – Результаты обработки промышленных сточных вод коагулянтом из красного шлама

В настоящее время из научно-технической и патентной литературы известен коагулянт в состав, которого входят цинкофосфатный шлам, триэтаноламин, полиакриламид, соляная кислота и вода при следующем соотношении ингредиентов, мас.%: цинкофосфатный шлам 15–20, соляная кислота 5–15, борная кислота 0,3–0,5, триэтаноламин 1–3, полиакриламид 1, вода – остальное. Предложенный коагулянт для очистки сточных вод обладает пониженной токсичностью и себестоимостью [10].

3.3 Коагулянт – активированный кальций-алюминат

В 2000 году Караваном С.В., Хрипуном М.К. и Мюндом Л.А. был изобретен коагулянт – активированный кальций-алюминат, который содержит соединения: алюминия, оксид кремния, оксид кальция, оксид железа, оксид натрия, оксид магния и диоксид серы. Получают его обработкой шлама – промежуточного продукта производства глинозема, причем обработку ведут 2%-ным водным раствором бикарбоната натрия и сульфата натрия в соотношении 1:1 в течение не менее 5 мин с последующим отделением, высушиванием и измельчением осадка. Очистку сточных и природных вод ведут активированным кальций-алюминатом в виде водной суспензии в количестве не менее 3 мг/дм3 при перемешивании не менее 0,1 мин. Этот новый коагулянт фактически является в большей степени адсорбентом и при этом на поверхности частиц суспензии происходит адсорбция, растворенных в воде, как ионов тяжелых металлов, так и их гидроксидов и основных солей. Частицы дисперсной фазы суспензии являются центрами хлопьеобразования и одновременно утяжелителями, благодаря чему происходит ускорение процесса коагуляции и как следствие в целом повышается эффективность очистки вод. Поскольку алюминий вводится в виде практически нерастворимых соединений, отсутствует остаточное содержание ионов алюминия, что приводит к повышению степени очистки обрабатываемой воды. Технический результат, достигаемый коагулянтом для очистки природных и сточных вод, способом его получения и использования, состоит в получении высококачественной питьевой воды для сохранения здоровья и долголетия человека, в эффективной и надеждой очистке сточных вод с целью обеспечения экологической безопасности человека и окружающей среды [12].

3.4 Коагулянты из природных минералов

Изучены способы получения коагулянтов из бокситов, каолинов, глин и других минералов, содержащих алюминий, суть которых заключается в разложении этих минералов серной кислотой с последующей кристаллизацией готового продукта. Однако эти способы сложные и трудоемкие [11,12].

3.5 Новые алюминий содержащие коагулянты

Из уровня техники известны способы очистки природных и сточных вод алюминий содержащими коагулянтами. Способ очистки природных и сточных вод, основанный на использовании в качестве коагулянта водного раствора сульфата алюминия, выбранного в качестве прототипа. Однако этот способ имеет некоторые недостатки, связанные со следующими отрицательными факторами при его использовании:

– низкая эффективность очистки воды при пониженных температурах (ниже 4°С);

– увеличение солевого фона очищаемой воды;

– повышение содержания сульфатов;

– снижение щелочности и водородного показателя;

– увеличение коррозионной активности

– значительное количество остаточного алюминия в очищенной воде.

Все эти факторы в целом приводят к сокращению срока службы сетей и водоводов и снижению их пропускной способности.

Известен способ очистки природных и сточных вод с использованием алюминий содержащего коагулянта, наиболее близкий по составу к предлагаемому изобретению и выбранный в качестве прототипа.

Недостатками этого способа являются сложность дозирования коагулянта за счет необходимости непрерывного и постоянного перемешивания для предотвращения выпадения в осадок частиц дисперсной фазы [5,15].

Характеристики

Тип файла
Документ
Размер
9,27 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6537
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее