166261 (624967), страница 3
Текст из файла (страница 3)
Образует с фторидами щелочных металлов комплексные соли типа Me2(MоF8).
Трифторид молибдена получается нагреванием МоВг3 в токе безводного HF. При нормальных условиях твердый. При нагревании во влажном воздухе диссоциирует:
4MoF3 + 6Н2О + 3O2 = 4МоО3 + 12HF
В сухом воздухе устойчив до 800°. При действии водорода восстанавливается до металла. Водой на холоду медленно разлагается.
У молибдена (VI) выделены два оксифторида - MoOF4 и MоO2F2. Это твердые, белые, тяжелые кристаллические вещества, получающиеся фторированием молибдена в присутствии кислорода или обменными реакциями МоО3 с фторидами.
MoCl6 термически очень неустойчив и чувствителен к малейшим следам влаги. Получен недавно длительным кипячением тионилхлорида с МоО3. МоС15 получается хлорированием молибдена в отсутствие воды и воздуха при 600 – 750°С. Кристаллизуется в виде темно-зеленых тригональных бипирамид. Температура плавления 194°С, температура кипения 238°С. Плотность МоС15 2,9275. Он растворяется в безводном эфире,спиртах, углеводородах, кетонах, альдегидах, сероуглероде, аминах с образованием комплексов. При нагревании в отсутствии кислорода разлагается:
МоС15 = МоС13 + С12
Водород при 900°С восстанавливает его до металла:
2МоС15 + 5Н2 → 10НС1 + 2Мо
Восстанавливать можно над накаленной металлической нитью в токе его пара в смеси с водородом. В этом случае на нити осаждается плотный слой молибдена, но при 250° образуется трихлорид:
МоС15 + Н2 → МоСІ3 + 2НС1
При нагревании МоС15 в сухом воздухе образуется оксихлорид МоО2С12. При нагревании во влажном воздухе МоС15 полностью разлагается, образуя окси - и гидроксихлориды. В воде полностью гидролизируется с большим выделением тепла.
Тетрахлорид молибдена получается хлорированием МоО3 смесью СІ2 и ССІ4. При нагревании без доступа влаги и кислорода МоСІ4 диспропорционирует на MoCl 5 и MoCl3. При нагревании в присутствии влаги и кислорода образуются оксихлориды и гидроксихлориды. С рядом веществ, в том числе органических, тетрахлорид образует продукты присоединения.
Трихлорид МоС13 получается в виде твердого красного вещества частичным восстановлением MoCl5 водородом при 250°, а также пропусканием смеси паров МоС15 с инертным газом над молибденом.
Трихлорид разлагается, не плавясь. Сублимирует в токе инертного газа. Устойчив в сухом воздухе при нормальной температуре, а при нагревании переходит в оксихлориды. При нагревании в инертном газе разлагается на МоСІ4 и комплексные нелетучие хлориды. Водой и водными растворами щелочей разлагается соответственно при нагревании и на холоду. С аммиаком образует комплексы. Окислителями окисляется до Н2МоО4. В соляной кислоте не растворяется. Растворяется в солянокислых растворах МоО3, образуя комплексы.
Все бромиды получаются действием Вг2 на Мо в среде СО. Так, черно-зеленые иглы тетрабромида получаются около 600°С при атмосферном давлении, тетрабромид – преимущественно при 350 – 500°С. При более низком давлении или несколько более высокой температуре получается смесь бромидов, в том числе комплексных. Известны также красно-оранжевые кристаллы диоксибромида МоО2Вг2 и желтые игольчатые кристаллы бромомолибденовой кислоты H3(MoO3Br3).
Достоверно известен лишь диодид молибдена Mol2 [23]. Получается он взаимодействием паров йода с металлом выше 1000°С:
Другие йодиды молибдена неизвестны.
2.5.3 С серой
Сера не реагирует с молибденом до температуры 400 – 450°С, при более высокой температуре образуется дисульфид молибдена MoS2:
Сероводород реагирует с молибденом при высокой температуре, образуя MoS2. В парах хлоридов серы образуются сульфохлориды молибдена.
Непрямыми методами были получены сульфиды молибдена MoS3, Mo2S5, Mo2S3. Первые два диссоциируют при температурах выше 400°С.
Помимо этих простых сульфидов известны также и полисульфид Mo(S2)2, тиомолибдаты Ме2MoS4. Высший сульфид MoS3 образуется при пропускании сероводорода через растворы молибдатов щелочных металлов:
Дисульфид молибдена
– важнейший минерал молибдена. Он образуется в земной коре в высотемпературных условиях. Имеет сложную слоистую гексагональную кристаллическую решетку. Пары воды окисляют
при красном калении. Кислоты-окислители разлагают
, переводя его в
, неокисляющие кислоты не действуют на него. Сульфиды щелочных металлов и щелочи разлагают
при сплавлении.
2.5.4 С азотом
С азотом молибден не реагирует, азот незначительно растворяется в молибдене. Нитриды молибдена добыты другим путем.
При температуре 400 – 745°С порошок молибдена реагирует с аммиаком с получением нитридов молибдена: МоN, Mo2N, β-фаза, содержащая 28% азота. Во всех трех фазах были установлены определенные кристаллические структуры. В вакууме при нагревании они легко разлагаются.
Нитриды, как и карбид Мо2С и бориды, являются соединениями, в которых валентные соотношения не сохранены. Мо3N и Mo2N относятся к так называемым фазам внедрения, в которых атом неметалла внедряется между атомами металла, при этом сохраняется кристаллическая структура последнего. МоN имеет более сложную структуру [8] и не может быть отнесен к фазам внедрения.
2.5.5 С углеродом
Молибден с углеродом образует два карбида: Мо2С и МоС [21, 23]. Это очень твердые, тяжелые, тугоплавкие металлоподобные соединения. Они близки по свойствам к фазам внедрения, имеющим металлический характер (проводимость, внешний вид и т. п.), обусловливаемый особенностями их атомно-кристаллической структуры. Мо2С образуется при 2400°С. Это темно-серый порошок, получаемый обычно науглероживанием в твердой фазе смеси молибденового порошка и сажи при 1400- 1500°С. Может быть также получен науглероживанием накаленной молибденовой проволоки из газовой фазы или взаимодействием МоО3 с СО и углеводородами. МоС плавится при 2650°С. Карбиды молибдена, благодаря своей твердости и тугоплавкости, играют важную роль в инструментальной и других отраслях современной техники.
Молибден образует с окисью углерода под высоким давлением гексакарбонил Мо (СО)6. Он диссоциирует при 150°С. Это ромбоэдрические белые кристаллы, возгоняющиеся при пониженном давлении и комнатной температуре, растворимые в эфире и бензоле. С органическими основаниями образует комплексы. При разложении Мо(СО)6 в зависимости от условий образуется металлическое зеркало или порошок из мелких гранул молибдена.
2.5.6 С кислородом
Литой и плотно спеченный слиток молибдена при нормальной и несколько повышенной температуре стоек к действию кислорода и воздуха [20]. При нагревании до темно-красного каления поверхность металла быстро тускнеет и при 600°С молибден загорается выделяя дым – возгон МоО3. Налет окисла легко разрушается и при длительном нагревании происходит полное сгорание металла до МоО3.
Молибденовый порошок окисляется при более низкой температуре, а мелкодисперсный порошок молибдена может самовозгораться на воздухе или в токе кислорода.
Рассмотрим ряд оксидов молибдена. Для молибдена были идентифицированы оксиды с химической формулой МоО3, и МоО2. Ковалентность молибдена в оксидах равна 3 и 2. Кроме того, получены оксиды промежуточного между МоО3 и МоО2 состава: Мо8О23, Мо9О26, Мо4О11, Мо17О47. характер связи в оксидах в основном ионный, частично ковалентный.
МоО и Мо2О3 не выделены в свободном состоянии, хотя ранее в литературе и упоминалось о их выделении [20, 23]. Рентгенографически идентифицирована фаза, содержащая кислород в количестве, соответствующему составу Мо3О. оксид МоО2 более тугоплавок и термодинамически устойчив чем оксид МоО3.
Поскольку молибден относится к металлам, то его оксиды должны проявлять основные свойства. Но оксиды МоО3, и МоО2 проявляют не основные свойства, а кислотные. Они дают ряд соединений общей формулой Н2МоО4 и Н2МоО3. основные свойства проявляет оксид Мо2О3.
МоО3 характерен гидрат состава Н2МоО4 и Н2МоО4 ×Н2О. Н2МоО4 - белые мелкие кристаллы гексагональной формы. Дигидрат Н2МоО4 × Н2О образуется при стоянии подкисленного раствора молибдатов в течении нескольких недель, а также при внесении затравки Н2МоО4 × Н2О в сильно подкисленный раствор парамолибдата аммония. Н2МоО4 - молибденовая кислота, кислота средней силы, например, она более сильная чем угольная кислота и вытесняет ее из ее солей:
Гидраты окислов с валентностью металла между VI и IV получены в виде соединений МоО(ОН)3 и Мо(ОН)5. сила этих электролитов очень слабая, они малорастворимы в воде.
МоО2 характерен гидрат состава Н2МоО3, который в свободном состоянии не выделен, выделен только в растворах, также получены его соединения состава Ме2МоО3. слабый электролит.
Также при действии аммиака на растворы молибдатов получен Мо(ОН)3 - аморфный порошок черного цвета, не растворим в воде и растворах щелочей, легко растворяется в минеральных кислотах и при отсутствии окислителей дает ионы Мо+3.
Рассмотрим свойства Н2МоО4
Молибденовая кислота реагирует при повышенной температуре с оксидами, гидроксидами, карбонатами щелочных и щелочноземельных металлов давая соответствующие молибдаты.
Состояние молибденовой кислоты в растворах зависит от кислотности и разбавлености последних. При большом разбавлении (<10-4 моль/л, РН>6,5) молибденовая кислота находится в растворе в виде простых молекул. В более концентрированных растворах и при РН меньше шести: РН<6 происходит полимеризация молекул. Степень сложности образованных комплексов также зависит от температуры.
Рассмотрим свойства Мо(ОН)3
Сухой Мо(ОН)3 - это аморфный порошок, не растворимый в воде и растворах щелочей. Он проявляет основные свойства. Легко растворяется в растворах минеральных кислот, при этом образуются соли Мо3+.
2.6 Биологическая роль молибдена
Молибден – один из основных микроэлементов в питании человека и животных. Он содержится во многих живых тканях и необходим для поддержания активности некоторых ферментов, участвующих в катаболизме пуринов и серосодержащих аминокислот [1]. Активной биологической формой элемента является молибденовый кофермент (molybdenum cofactor, Moco) – низкомолекулярный комплекс небелковой природы, действующий в составе ферментов и необходимый для осуществления специфических каталитических превращений. Moco является коферментом четырех важных ферментов: ксантиндегидрогеназы, ксантиноксидазы, сульфитоксидазы и альдегидоксидазы. Ксантиндегидрогеназа катализирует превращение гипоксантина в ксантин, а затем в мочевую кислоту. Этот фермент, наряду с ксантиноксидазой, участвует в метаболизме пурина (образование NADH из NAD+). Сульфитоксидаза, находясь в митохондриях, участвует в метаболизме серосодержащих аминокислот – цистеина и метионина – и катализирует окисление сульфита в сульфат. Альдегидоксидаза принимает участие в реакциях катаболизма пиримидинов и биотрансформации ксенобиотиков – чужеродных для организма человека и животных веществ, порожденных в той или иной степени хозяйственной деятельностью человека и не входящих естественным образом в биотический круговорот. Именно со способностью альдегидоксидазы катализировать окисление в организме канцерогенных ксенобиотиков связывают предполагаемую антираковую активность молибдена.
| ДНЕВНЫЕ НОРМЫ ПОТРЕБЛЕНИЯ МОЛИБДЕНА | |
| Возраст, лет | (мкг/день) |
| Младенцы, 0–0,5 | 15–30 |
| 0,5–1 | 20–40 |
| Дети, 1–3 | 25–50 |
| 4–6 | 30–75 |
| 7–10 | 50–150 |
| 11–18 | 75–250 |
| От 19 и старше | 75–250 |
Несмотря на то, что молибден является малораспространенным элементом, случаи его дефицита в организме человека редки.
В приведенной в тексте таблице указаны нормы потребления молибдена в зависимости от возраста человека, из данных таблицы можно сделать вывод, что в возрастанием возраста человека потребность в молибдена также возрастает. Недостаток молибдена вызывает тяжелые заболевания. Наиболее богатые элементом № 42 пищевые продукты: бобовые и злаковые растения, листовые овощи, молоко, фасоль, печень и почки.
2.7 Применение молибдена
Несколько столетий ученым в Европе не удавалось разгадать тайну остроты и прочности древних самурайских мечей и изготовить холодное оружие с подобными свойствами и только в 19 в. в мечах 14 в. была обнаружена примесь молибдена, обусловливающая их высокую прочность. Долгое время с момента открытия молибдена К. Шееле этот металл оставался лабораторной редкостью до того, как в конце 19 века был предложен промышленный способ извлечения молибденита. В 1891 французская фирма Schneider & Co впервые начала использовать молибден в качестве легирующей добавки, придающей стали одновременно высокую твердость и вязкость [20, 23]. Резкий скачок в объеме потребления молибдена произошел во время Первой мировой войны, так как темпы производства металлического вольфрама, использовавшегося в качестве легирующей добавки в производстве броневой стали, явно отставали от темпов его увеличивающегося потребления. К этому времени уже были известны замечательные свойства молибдена как легирующей добавки, но основные проблемы были связаны с нехваткой разведанных месторождений молибденита. Интересно, что 75-миллиметровая броня (сталь, легированная марганцем) появившихся на полях сражений в 1914 – 1918 годах танков англо-французских войск легко пробивалась 75-миллиметровыми снарядами немецкой артиллерии. Стоило только добавить молибден (в количестве всего 1,5–2%) к стали, как эти снаряды становились бессильны даже против 25-миллиметровых броневых листов.
Из всего количества молибдена, потребляемого промышленностью, до 80% используется в черной металлургии для производства жаропрочных, жаростойких антикоррозионных, инструментальных, быстрорежущих, магнитных, конструкционных сталей, жаропрочных и жаростойких чугунов. Молибден повышает прочность сталей на холоду и содействует ее сохранению при высокой температуре, повышает жаростойкость сталей и чугуна, улучшает способность принимать закалку, 1 вес. ч. Мо повышает прочность стали эквивалентно 2 - 2,5 вес. ч. вольфрама.
10>6>














