151827 (621974), страница 2
Текст из файла (страница 2)
Границы малой солнечной энергетики постоянно расширяются, и теперь она способна обеспечивать энергией не только отдельные дома, но и целые заводы. В качестве примера можно назвать металлургический завод под Ташкентом, экспериментальные СЭС-5 в Крыму и «Solar-1» в Калифорнии. Это гелиостанции башенного типа с котлом, поднятым высоко над землей, и большим числом параболических или плоских зеркал (гелиостатов), расположенных у подножия. Зеркала должны быть подвижными, отслеживать дневное перемещение Солнца с помощью механической системы, управляемой компьютером, что усложняет установку и очень сказывается на стоимости производимой энергии. Вырабатываемый котлом пар приводит в действие электрогенератор, как на тепловых станциях.
Такие солнечные электростанции мощностью 0,1–10 МВт были построены во многих странах с «хорошим» солнцем (США, Франция, Италия, Япония) и сейчас успешно работают. Появились проекты более мощных СЭС (до 100 МВт). Главное препятствие их широкому распространению – высокая себестоимость электроэнергии, в 6–8 раз выше, чем на ТЭС. Хотя имеется тенденция к снижению (за счет более простых гелиостатов, более эффективных полупроводников, легких ленточных панелей), пока наземные СЭС не могут экономически конкурировать с ТЭС. Другое дело – соображения экологического порядка. Молодые солнечные станции намного «чище» тепловых и свою нишу в энергетике они, несомненно, найдут. Прогресс науки и улучшение международного климата, когда СЭС, расположенная в пустынной местности, будет снабжать энергией сразу несколько стран, будут способствовать их внедрению. И все же наземные СЭС вряд ли способны полностью решить проблему «большой энергетики» для современной индустрии, как это делают в настоящее время крупные ТЭС и АЭС мощностью порядка 10 ГВт. Столь мощные СЭС были бы чрезвычайно громоздки, для их постройки нужно отчуждать огромные территории в пустынных местах и передавать электроэнергию на большие расстояния. При этом пропадает экологическая «чистота» и не устраняется тепловой нагрев Земли (что считалось изначально главными достоинствами солнечной энергетики). Чтобы предназначенное было полностью выполнено, надо выносить СЭС в космическое пространство.
Глава 3. Космические солнечные станции
Идею солнечной космической электростанции (СКЭС) предложил американец П.Е.Глезер в 1968 г. Она включала три необходимых элемента, которые не изменились за прошедшие 30 лет: размещение на искусственном спутнике солнечных батарей, преобразующих радиацию в электрический ток; выбор экваториальной геостационарной орбиты, обеспечивающей в течение всего года постоянную освещенность панелей и «зависание» станции над определенным местом Земли; преобразование тока в СВЧ-излучение и передача его направленным пуком на наземную приемную антенну.
Принципиальная схема СКЭС
Достоинства СКЭС очевидны: увеличение плотности потока солнечной радиации, рассеивание фонового тепла в космос (исключается опасность теплового перегрева Земли), отсутствие контакта с земной природой. Сразу видны и большие трудности. Кроме чисто технической задачи, связанной с КПД фотоприемников и необходимостью развертывания в космосе многокилометровых солнечных панелей, осталась неясной проблема сжатия пучка излучения, который на расстоянии 36 тыс. км (радиус геостационарной орбиты) должен иметь поперечный размер не больше 10 км (предельный размер наземной антенны). Угол расходимости пучка, как легко подсчитать, не должен превышать 1'. Несмотря на заманчивость и кажущуюся простоту идеи, столь серьезные трудности не могли быть быстро преодолены, и реализация «истинно солнечной энергетики» перенесена в XXI в., где стала одной из важнейших научных проблем.
Известно несколько типов преобразователей солнечной радиации (машинные – с газовыми и паровыми турбинами), прямые (без стадии механической работы) – на основе различных термо- и фотоэлементов), но сейчас, по-видимому, можно отдать твердый приоритет солнечным полупроводниковым батареям, давно и с успехом работающим в космосе. Это кремниевые полупроводники с добавками алюминия и лития, в которых происходит прямое преобразование солнечной радиации в электрический ток. Они надежны, достаточно эффективны (КПД = 15%) и относительно недороги.
Глава 4. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ПО ТЕМЕ «СОЛНЕЧНАЯ ЭНЕРГЕТИКА»
4.1 Программа элективного курса по теме "Мир ищет энергию"
Бурное развитие промышленности и быстрый рост населения Земли вызывают увеличение потребности в топливе и рост его добычи. В последние годы термин «энергетический кризис» все чаще стал появляться в печати и обыденной речи. По прогнозам ученых, запасами угля человечество обеспечено на 100 – 150 лет, ресурсов нефти хватит на 40 – 50 лет. По этим причинам возникает необходимость поиска новых видов энергии: неисчерпаемых и экологически чистых.
До последнего времени возобновляемые источники энергии (ВИЭ) рассматривались лишь как энергоресурсы будущего, когда будут исчерпаны традиционные источники энергии или когда их добыча станет чрезвычайно дорогой и трудоемкой. Ситуацию резко изменило осознание человечеством экологических пределов роста. Быстрый экспоненциальный рост негативных антропогенных воздействий на окружающую среду ведет к существенному ухудшению среды обитания человека. Поддержание этой среды в нормальном состоянии становится одной из приоритетных целей жизнедеятельности общества.
Экономический потенциал возобновляемых источников энергии в мире в настоящее время оценивается в 20 млрд. тонн условного топлива в год, что в два раза превышает объем годовой добычи всех видов ископаемого топлива. И это обстоятельство указывает путь развития энергетики ближайшего будущего.
Основное преимущество возобновляемых источников энергии – неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии.
В связи с выше изложенным представляется актуальным познакомить учащихся с историей развития альтернативной энергетики, способами преобразования возобновляемой энергии в электрическую и тепловую и перспективами использования альтернативной энергии.
Цели курса:
-
Обучающие:
-
сформировать общее представление о способах преобразования возобновляемой энергии в электрическую и тепловую;
-
овладение конкретными знаниями энергосберегающих технологий, необходимыми для решения проблемы дефицита электроэнергии;
-
раскрыть перспективы использования альтернативной энергии.
-
Развивающие:
-
развитие познавательных интересов, творческих способностей;
-
развитие способности приобретать знания, критически оценивать полученную информацию;
-
развить способность саморазвиваться, интеллектуально, нравственно самосовершенствоваться.
Воспитательные:
-
повышение уровня сознания учащихся необходимости энергосбережения;
-
сознательное самоопределение будущей сферы деятельности.
Задачи курса:
-
Исследовать вопрос об актуальности использования возобновляемых источников энергии.
-
Изучить источники ресурсов альтернативной энергии и провести оценку их потенциала. Проанализировать причины ограничения масштабов использования ВИЭ.
-
Изучить принципы преобразования возобновляемой энергии в электрическую и тепловую. Провести сравнение стоимостей электроэнергии, вырабатываемой различными электростанциями.
-
Дать оценку достоинствам и недостаткам использования альтернативных энергоресурсов.
-
Рассмотреть новые энергоэффективные технологии и предложить свои варианты решения проблемы энергосбережения.
-
Исследовать пути развития энергоресурсов будущего.
-
Собрать действующие модели установок, использующих солнечную, ветровую энергию и энергию воды.
Учебно-тематическое планирование
№ | Тема занятия | Кол-во часов | Форма организации обучения |
Введение (1 час) | |||
1. | Возобновляемые источники энергии. | 1 | Установочное, |
II. Традиционные ВИЭ (3 часа) | |||
2. | 1.1. Гидравлическая энергия | 1 | Комбинирован. |
3. | 1.2. Энергия биомассы | 1 | Комбинирован. |
4. | 1.3. Геотермальная энергия. | 1 | Комбинирован. |
II. Нетрадиционные ВИЭ (7 часов) | |||
5. | 2.1. Солнечная энергия | 1 | Семинар |
6. | 2.2. Ветровая энергия | 1 | Комбинирован. |
7. | 2.3.Энергия морских волн и океанических течений. Энергия приливов | 1 | Комбинирован. |
8. | 2.4.Гидравлическая энергия, преобразуемая в используемый вид энергии малыми и микроГЭС | 1 | Комбинирован. |
9-11 | Практикум. Работа с технологическими наборами LEGO DACTA: 9680 («Энергия, работа, мощность») | 3 | Практикум |
III. Энергосбережение (4 часа) | |||
12 | 3.1. Энергоэффективные технологии. | 1 | Семинар |
13 | 3.2.Энергопассивный экодом | 1 | Комбинирован. |
14. | 3.2. Урок экономии электроэнергии. | 1 | Лекция |
15 | 3.3.Экономия электроэнергии в школе. | 1 | Практикум |
16-17 | IV. Конференция «Возобновляемая энергетика – реальность и перспективы» (2 часа) | ||
Итого: | 17 часов |
Предполагаемый результат:
-
Сформировано общее представление об особенностях ВИЭ и перспективах развития энергоресурсов будущего.
-
Учащиеся исследовали спектр источников ресурсов альтернативной энергии, увидели сложность процессов взаимодействия человека и окружающей природы, как проявление особой формы единства человека и природы.
-
Для сознательного выбора будущей профессии учащиеся осознанно мотивируют процесс получения знаний, развивают свои творческие способности.
Содержание программы
1. Возобновляемые источники энергии. Классификация ВИЭ
Истощение потенциала традиционных энергоресурсов. Быстрый экспоненциальный рост негативных антропогенных воздействий на окружающую среду. Актуальность использования возобновляемых источников энергии. Основное преимущество возобновляемых источников энергии – неисчерпаемость и экологическая чистота. Виды возобновляемой энергии.
I. Традиционные ВИЭ (3 часа)
1.1. Гидравлическая энергия
Первые гидроэлектростанции. Принципы работы ГЭС. Преимущества гидроэнергетики. Себестоимость электроэнергии на российских ГЭС. Гидроэнергетика в мире: крупнейшие ГЭС в мире. Гидроэлектростанции России. Аварии и происшествия на ГЭС. Экологические изменения в широком развитии гидроэлектрических ресурсов.
1.2. Энергия биомассы
Биомасса — энергоносители растительного происхождения. Технологии выработки энергии. Наиболее оптимальный способ использования биомассы. Газификация и пиролиз. Экологические показатели. Стоимость тепла и электроэнергии. Перспективные области применения турбогенераторов, использующих биомассу.