151672 (621876), страница 3
Текст из файла (страница 3)
Проверяем выбранный трансформатор по коэффициенту загрузки в нормальном режиме работы Kзн
Kзн = ,
где nтр – число трансформаторов, шт.
Kзн = = 0,60 < 0,75.
Проверяем выбранный трансформатор по коэффициенту загрузки в аварийном режиме работы Kз.ав.
Kз.ав. = ,
Kз.ав. = = 1,2 < 1,4.
Т.к. коэффициент загрузки не превышает рекомендуемых правилами эксплуатации значений, то принимаем трансформаторы к окончательной установке, его технические параметры сводим в таблицу 3.
Таблица 3 – Параметры силового трансформатора
Тип трансформатора | Sном, кВА | Uв.н., кВ | Uн.н., кВ | Pк.з., кВт | Uк.з., % | Iх.х., % | Pх.х., кВт | Kз.н | Kз.ав |
ТСЗ-630/10 | 630 | 10 | 0,4 | 7,3 | 5,5 | 3 | 2 | 0,6 | 1,2 |
Выбранная компоновка электрооборудования должна обеспечить: пожаробезопасность и взрывобезопасность, действие окружающей среды на оборудование, безопасность обслуживания оборудования в нормальном режиме работы установки, максимальную экономию площади, возможность удобного транспортирования оборудования, безопасный осмотр, смену, ремонт аппаратов, со снятием напряжения не нарушив нормальной работы аппаратов под напряжением.
Т.к. среда в помещении нормальная, площадь цеха позволяет расположить трансформаторную подстанцию, то принимаем к установке двухтрансформаторную комплектную подстанцию внутрицехового исполнения.
7. Расчёт потерь мощности в трансформаторе
Потери мощности в трансформаторах состоят из потерь активной и реактивной мощности.
Потери активной мощности состоят из двух составляющих: потерь, идущих на нагрев обмоток трансформатора, зависящих от тока нагрузки и потерь, идущих на нагревание стали, зависящих от тока нагрузки.
Потери реактивной мощности состоят из двух составляющих: потерь, вызванных рассеянием магнитного потока в трансформаторе, зависящих от квадрата тока нагрузки и потерь, идущих на намагничивание трансформатора, независящих от тока нагрузки, которые определяются током холостого хода.
Расчёт потерь мощности в трансформаторе необходим для более точного выбора сетей высокого напряжения, а также для определения стоимости электроэнергии.
Определяем потери активной мощности в трансформаторе ΔP, кВт, по формуле
ΔP = Pкз · Kзн2+Рхх,
где Pкз – потери активной мощности в трансформаторе при проведении опыта короткого замыкания
Рхх – потери активной мощности в трансформаторе при проведении опыта холостого хода, кВт.
ΔP = 7,3 · 0,62+2 = 4,6 кВт.
Рассчитываем потери реактивной мощности в трансформаторе ΔQ, кВар
ΔQ = 0,01 · (Uкз · Kзн2 + Iхх) · Sн,
где Uк.з. – напряжение при опыте короткого замыкания в процентах от номинального
Iх.х. – ток при опыте холостого хода в процентах от номинального
ΔQ = 0,01 · (5,5 · 0,62+3) · 630 = 31,4 кВар.
Определяем потери полной мощности в трансформаторе ΔS, кВА
ΔS = ,
ΔS = = 31,7 кВА.
Все полученные данные сводим в таблицу 4.
Таблица 4 – Потери мощности в трансформаторе
Тип трансформатора | Sm, кВА | Uв.н., кВ | Uн.н., кВ | ΔP,кВт | ΔQ,кВар | ΔS,кВА |
ТСЗ-630/10 | 630 | 10 | 0,4 | 4,6 | 31,4 | 31,7 |
Итак, потери мощности в трансформаторе будут зависеть от коэффициента загрузки трансформатора, от его конструктивного исполнения и полной номинальной мощности. Для уменьшения потерь необходимо правильно выбрать трансформатор и оптимально загрузить его.
8. Расчёт и выбор сетей напряжением выше 1 кВ
Критерием для выбора сечения кабельных линий является минимум приведённых затрат. В практике проектирования линий массового строительства выбор сечения производится не по сопоставительным технико-экономическим расчётам в каждом конкретном случае, а по нормируемым обобщённым показателям.
Т.к. сети напряжением выше 1 кВ не входят в перечень [4, пункта 1.3.28], то выбор сетей до цеховой трансформаторной подстанции осуществляем по экономической плотности тока jэк, .Рассчитываем максимальную активную мощность, проходящую по высоковольтному кабелю, Рm(10), кВт с учётом потерь мощности в трансформаторе
Рm(10) = Рmц+nтр · ΔP,
Рm(10) = 725,12+2·4,6=734,32 кВт.
Определяем максимальную реактивную мощность, проходящую по кабелю U=10 кВ с учётом потерь мощности в трансформаторе Qm(10), кВар, по формуле
Qm(10)=Qm'+ nтр · ΔQ,
Qm(10)=210,72+2·31,4=273,52 кВар.
Определяем полную мощность в сетях высокого напряжения Sm(10), кВА
Sm(10)= =783,6 кВА.
Рассчитываем коэффициенты активной (cosφ(6)) и реактивной (tgφ(6)) мощности высоковольтной линии
cosφ(10)= = 0,94,
tgφ(10)= = 0,37.
Рассчитываем силу тока, проходящую по линии напряжением U=10 кВ Im(10), A
Im(10)= =22,6 А.
По справочнику [4, таблица 1.3.36] определяем экономическую плотность тока, учитывая, что число часов использования максимума нагрузки в год Тm=3000-5000 тысяч час/год и прокладываемый кабель марки ААШв
jэк = 1,4 А/мм2
Определяем экономически целесообразное сечение кабеля Fэк, мм2
Fэк= ,
Fэк= =16,14 мм2.
Принимаем к прокладке кабель ближайшего стандартного сечения 16 мм2, т.е. ААШв 3х16 с допустимым током Iд, А, определяемым по каталогу [4, таблица 1.3.16]
Iд=80 А.
Определяем допустимую величину тока с учётом поправочных коэффициентов
Iд'=Iд·Kп·Kт,
где Kп – поправочный коэффициент на параллельную прокладку двух кабелей
в траншее, принимаемый по каталогу по [4, таблица 1.3.26], Kп=0,9;
Kт – поправочный коэффициент на температуру земли, принимаемый по каталогу [4, таблица 1.3.3], Kт=1, т.к. принята температура t=15 ºC.
Iд'=80·0,9·1=72 А > Im(10)=22,6 А.
По справочнику [7, таблица 4-79] определяем активное (r0) и реактивное (х0) сопротивления кабельной линии, Ом/км
r0=1,95 Ом/км,
х0=0,113 Ом/км.
Проверяем выбранный кабель по потере напряжения ∆U, %, которые согласно [8] не должны превышать 5%
∆U= ,
∆U= =0,59% .
Параметры кабеля заносим в таблицу 5.
Таблица 5 – Параметры кабеля
Uн, кВ | Im(10), А | Марка и сечение кабеля | Iд′, А | r0, Ом/км | x0, Ом/км | l, км | ΔU, % |
10 | 22,6 | ААШв 3×16 | 72 | 1,95 | 0,113 | 0,8 | 0,59 |
ААШв – кабель с алюминиевыми жилами, с бумажной изоляцией, алюминиевая оболочка, в поливинилхлоридном шланге.
Итак, кабель выбранный по экономической плотности тока обеспечивает снижение сопротивления кабеля, возможность расширения производства, а также запас по току, что ведет к снижению эксплуатационных затрат, т.к кабель нагревается значительно меньше, обеспечивая, тем самым, меньший физический износ изоляции, а как следствие меньшее число повреждений и пробоев.
9. Расчёт и выбор питающих сетей напряжением до 1 кВ
Согласно [4, пункт 1.3.20] проверке по экономической плотности тока не подлежат: сети промышленных предприятий и сооружений напряжением до 1 кВ при числе использования максимума нагрузки предприятий до 4000-5000; сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений; ответвления к отдельным электроприёмникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий.
Т.к. шины не входят в перечень [4, пункт 1.3.28], то выбор осуществляем по току с условием, что Iд≥Imц с проверкой по потере напряжения и на действие токов короткого замыкания.
В результате расчёта электрических нагрузок максимальный ток Imц=1321,8 А.Т.к. ток проходящий по одной секции Im1с=660,9 А, то принимаем к предварительной установке шину алюминиевую сечением 50×6 с Iд=740А по каталогу [6,таблица 1.3.31].
Согласно [4, пункт 1.3.23] при расположении шин плашмя ток, указанный в справочнике [4, таблица 1.3.31], должен быть уменьшен на 5 %, если ширина шины до 60 мм и на 8 %, если ширина шины больше 60 мм.
Iд′ = 740-0,05·740 = 703 А > Im1с=660,9 А.
По справочнику [7, таблица 4-79] определяем активное (r0) и реактивное (х0) сопротивления шины, Ом/км
х0=0,137 Ом/км,
r0=0,119 Ом/км.
Проверяем выбранную шину по потере напряжения ∆U, %, при длине шины l =0,005 км
∆U= Im1c·l·( r0·cosφсрв+ х0·sinφсрв),
∆U%= ·100%,
∆U= 660,9·0,005·(0,119·0,83+0,137·0,55) =0,57 В,
∆U%= ·100=0,3 % ≤ 1,8%.
Т.к. Iд′ = 703 А > ImIс = 669,9 А; ΔU% = 0,5 % < 1,8 %, то принимаем шину к предварительной установке. Окончательное решение будет принято после проверки шины на термическое и динамическое действие токов короткого замыкания.
Выбор кабельных сетей, идущих к силовым шкафам.
В результате расчёта электрических нагрузок шкафа ШР1 Imшр1= 48,8 А. Т.к. согласно [4, пункт 1.3.28] сети напряжением до 1 кВ не подлежат проверке по экономической плотности тока при Tm ≤ 5 тыс. час/год, то выбор осуществляем по току с условием, что Iд ≥ Imшр1, с проверкой по потере напряжения и на установленную защитную аппаратуру.
Определяем ток расцепителя автоматического выключателя Iрасц, А
Iрасц = Kп1·Imшр1,
где Кп1 – поправочный коэффициент учитывающий неточность калибровки расцепителя и одновременный запуск всех потребителей шкафа, принимаем Кп1 = 1,25.