151626 (621849), страница 2
Текст из файла (страница 2)
Будем считать электроды плоскими, в этом случае распределение потенциала вдоль оси x линейно:
, где Ue – напряжение на ускоряющем промежутке
Поток электронов
, где Ib – ток электронного пучка;
q – элементарный заряд
С учётом вышесказанного получим:
(5.1)
Чтобы найти концентрацию нейтралов и их температуру в пределах цилиндра радиуса R – nb , Tb – необходимо записать уравнения баланса частиц и энергий.
Поток частиц из цилиндра Фout:
(5.2)
Поток частиц в цилиндр Фin:
(5.3)
где Sс = 2R2 + 2Rd – площадь поверхности цилиндра;
M – масса нейтрала; k – постоянная Больцмана;
nb и n0 – концентрация нейтралов в цилиндре и за его пределами;
Tb и T0 – температуры нейтралов в цилиндре и за его пределами.
Если Фin = Фout , то из формул (5.2–5.3) получим:
(5.4)
Энергия, выносимая из цилиндра Wout:
(5.5)
Энергия, вносимая в цилиндр Win:
, (5.6)
где E находится по формуле (5.1)
Если Win = Wout , то, подставив в формулу (5.5) выражение (5.4), получим:
, (5.7)
где
(5.8)
Так как
(P – давление газа за пределами цилиндра), то получим:
, или
если P выражено в Торр. (5.9)
Таким образом, при увеличении энергии ионов имеет место снижение концентрации нейтралов. В свою очередь, энергия ионов увеличивается за счёт роста тока пучка. Результаты модели в полной мере соответствуют зависимостям, полученным экспериментальным путем. Локальный нагрев газа электронным пучком ведёт к увеличению электрической прочности ускоряющего промежутка плазменного источника электронов в присутствии пучка в ускоряющем промежутке, в форвакуумном диапазоне давлений.
6. РАСЧЁТ И ОБРАБОТКА РЕЗУЛЬТАТОВ
Исходные данные
P = 60 160 мТорр (давление газа вне пучка)
T0 = 300 K (температура газа вне пучка)
Ib = 0.1 1 A (ток электронного пучка)
R = 6 мм = 0.006 м (радиус эмиссионного отверстия анода)
d = 5 мм = 0.005 м (расстояние между анодом и экстрактором)
Рабочим газом является остаточная атмосфера воздуха. В качестве рабочих параметров примем параметры азота N2. Для азота из [1]:
м (длина свободного пробега молекулы азота
при P=1Торр и T=273K);
M = 4.65110-26 кг (масса молекулы азота)
Будем считать, что Г, i, e изменяются незначительно при изменении тока электронного пучка и напряжения на промежутке в указанных пределах, поэтому данные величины считаем постоянными. Для определения i и e воспользуемся формулами из [1]:
, или
, или
Экспериментально установлено, что электроны в пучке имеют энергию порядка 4 эВ, что соответствует температуре 46400К. Вычислим i и e для этой температуры и P = 0.1 Торр :
м ;
м
Для получения зависимости пробивного напряжения промежутка от концентрации нейтралов Uпр=f(nb) воспользуемся экспериментальной кривой Uпр=f(P) для случая, когда электронного пучка нет. Тем самым мы учтём конструктивные особенности электродов.
Таблица 6.1. Экспериментальная зависимость Uпр=f(P) при Ib = 0
| P, мТорр | Uпр(P), кB |
| 60 80 100 120 140 160 | 12,5 10 6 3 1 0,5 |
Итак:
, а из формул (4.9 и 4.1):
,
т.е. пробивное напряжение зависит от концентрации нейтралов, которая, в свою очередь, зависит от напряжения на промежутке.
Будем искать пробивное напряжение, решая систему этих уравнений для нескольких Ib и P (решение в MathCAD приведено в приложении 1).
Таблица 6.2. Экспериментальные и расчётные результаты.
| P, mTorr | Uпр , кВ | ||||
| расчёт | эксперимент | ||||
| Ib = 0A | Ib = 0.5А | Ib = 1A | Ib = 0.5A | Ib = 1A | |
| 60 80 100 120 140 160 | 12,5 10 6 3 1 0,5 | 14,4 12,4 9,4 4,1 1,2 0,48 | 15,2 13,5 11,5 6,4 1,5 0,47 | 14 12 9 6 4 3 | 15 13 10 7 5 4 |
По данным таблицы 6.2 построим графики зависимости Uпр=f(P) для расчётных и экспериментальных данных.
Рисунок 6.1. График зависимости Uпр=f(P) при Ib = 0.5A
Рисунок 6.2. График зависимости Uпр=f(P) при Ib = 1A
Рисунок 6.3. График зависимости Uпр=f(P)ы
7. ВЫВОДЫ
Таким образом, как показали расчеты, проведенные с использованием приведенной выше модели - при увеличении энергии обратного потока ионов, образующихся в ускоряющем промежутке плазменного источника электронов в результате ионизации газа электронным пучком, имеет место снижение концентрации нейтралов. В свою очередь, энергия ионов увеличивается по мере роста тока электронного пучка. Результаты модели находятся в хорошем согласии с зависимостями, полученными экспериментальным путем. Локальный нагрев газа электронным пучком ведёт к увеличению электрической прочности ускоряющего промежутка плазменного источника электронов в присутствии пучка в ускоряющем промежутке, в форвакуумном диапазоне давлений.
СПИСОК ЛИТЕРАТУРЫ
-
Левитский С. М. “Сборник задач и расчётов по физической электронике”– Киев, изд-во Киевского университета, 1960 – с. 178
-
Гапонов В. И. “Электроника”, ч.1 – М.: Физматгиз, 1960
-
Крейндель Ю. Е. “Плазменные источники электронов”, 1977
ПРИЛОЖЕНИЕ 1
nb , 1/м3
Uпр ,B
26













