151279 (621652), страница 2

Файл №621652 151279 (Методика изучения квантовой оптики в базовой и профильной школах) 2 страница151279 (621652) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

1. Знакомство учащихся с самим явлением фотоэффекта. Рассказ об истории его открытия (Г. Герц).

2. Рассказ о поиске закономерностей этого явления. Исследования А. Г. Столетова.

3. Рассмотрение основных закономерностей фотоэффекта. Показ, вскрытие имеющихся трудностей — невозможность объяснить все законы фотоэффекта с известных уже учащимся позиций (волновой теории света).

4. Выдвижение гипотезы световых квантов. Рассказ о работе А. Эйнштейна. Уравнение фотоэффекта.

5. Объяснение всех закономерностей фотоэффекта с квантовых позиций.

6. Выводы квантовой тёории о природе света.

7. Вакуумные и полупроводниковые фотоэлементы. Применение фотоэффекта в технике.

Раскроем основные из этих этапов.

К пониманию явления фотоэффекта и его закономерностей лучше всего подвести школьников с помощью эксперимента. На первом уроке по теме обычно предлагают серию опытов.

1) Закрепленную на стержне электрометра хорошо очищенную цинковую пластину заряжают отрицательно и освещают потоком ультрафиолетовых лучей. Наблюдают разряд электрометра.

2) Разряд прекращается, если мы перекрываем поток лучей стеклом.

З) Если же сообщить пластине положительный заряд, то при таком же освещении разряд электрометра не наблюдается.

4) Разряд происходит тем быстрее, чем больше интенсивность света.

5) Заменив цинковую пластину медной (затем свинцовой), повторяют опыты при тех же условиях (тот же источник света и начальный заряд).

Если в школе нет хорошего источника ультрафиолетового излучения и постановка эксперимента на уроке затруднена, то целесообразно провести объяснение на основе использования видеофильма «Фотоэффект», в первых кадрах которого показаны описанные выше демонстрации.

Предложенная последовательность демонстраций (или просмотр кадров видеофильма) позволяет проводить первый урок по теме методом эвристической беседы.

В ходе беседы последовательно обсуждают следующие вопросы: почему заряженная пластина может сохранять заряд в течение длительного времени? Какими способами можно разрядить пластину? Как объяснить быстрый разряд отрицательно заряженной пластины при ее освещении светом дуги? Будет ли при действии ультрафиолетового излучения разряжаться положительно заряженная цинковая пластина? Почему электрометр не обнаруживает изменения заряда в этом случае? Наблюдаем ли мы разряд медной пластины при тех же условиях опыта? Почему прекращается разряд отрицательно заряженной цинковой пластины, если свет от электрической дуги перекрыть стеклянной пластиной?

Проведенное обсуждение позволяет сделать выводы:

1. Под действием света разряжаются только отрицательно заряженные металлы. Следовательно, при некоторых условиях свет способен вырывать электроны из металлов. Это явление называют фотоэффектом. (Здесь же можно рассказать и об истории открытия фотоэффекта.)

2. Разряд начинается одновременно с началом освещения, следовательно, фотоэффект практически безынерционен. (Точные опыты показали, что время между началом облучения и началом фотоэффекта не превышает 10-9 с.)

3. Наличие фотоэффекта зависит от рода и обработки освещаемого металла и от спектрального состава излучения, скорость разряда зависит также и от падающей в единицу времени световой энергии.

При формулировке выводов приходится избегать понятий «освещенность», «световой поток», так как их по программе общеобразовательной средней школы не изучают, а использовать главным образом понятие «энергия световой волны» и говорить об энергии, которая за 1 с переносится световой волной через поперечное сечение, перпендикулярное к направлению распространения света (т. е. об интенсивности света).

Изучение закономерностей фотоэффекта продолжают на установке, позволяющей исследовать зависимость силы фототока от приложенного напряжения, интенсивности и спектрального состава излучения. В названном выше видеофильме «Фотоэффект» эта зависимость исследована на установке, подобной установке А. Г. Столетова (цинковый диск освещен ультрафиолетовым светом дуговой лампы сквозь латунную сетку; в цепь включен гальванометр и подано напряжение от аккумуляторной батареи). На уроке эксперимент проводят с помощью вакуумного фотоэлемента, для чего собирают установку по схеме, приведенной на рис. Вначале экспериментально устанавливают существование силы тока насыщения, а затем — его зависимость от интенсивности падающего на катод света (первый закон фотоэффекта — закон Столетова). По результатам эксперимента строят графики зависимости силы фототока при двух разных интенсивностях света от напряжения U.

После этого, освещая фотоэлемент светом определенной частоты, с помощью потенциометра «запирают» фотоэлемент и измеряют запирающее напряжение, что позволяет определить максимальную скорость вылетающих электронов:

.

Меняя светофильтры, получают при повторении опытов новые данные и убеждают учащихся в том, что максимальная скорость вылета электронов зависит от частоты падающего света и не зависит от интенсивности света (второй закон фотоэффекта).

Далее приступают к объяснению законов фотоэффекта. Само явление и то, что сила фототока насыщения прямо пропорциональна падающей в единицу времени световой энергии - первый закон фотоэффекта, можно объяснить и с волновых позиций. Объяснение того, почему существует порог фотоэффекта (красная граница), почему максимальная начальная скорость (и максимальная кинетическая энергия фотоэлектронов) не зависит от интенсивности света, а определяется только его частотой (линейно возрастает с частотой), а также объяснение безынерционности фотоэффекта не может быть дано на основе волновой электромагнитной теории света. Ведь по этой теории вырывание электронов из металла является результатом их «раскачивания» в переменном электрическом поле световой волны. Но тогда и скорость и кинетическая энергия фотоэлектронов должны зависеть от амплитуды вектора напряженности электрического поля волны и, следовательно, от ее интенсивности, на «раскачку» электрона требуется время, эффект не может быть безынерционным. Несоответствие экспериментальных фактов сложившейся волновой теории света доказывало ее несостоятельность и требовало создания новой теории

Далее рассказывают о том, что трудности в объяснении законов фотоэффекта были не единственной причиной создания теории. В 1900 г. М. Планк для объяснения теплового излучения вынужден был высказать, на первый взгляд, нелепую идею, что тело излучает энергию не непрерывно, а отдельными порция (квантами). Эта идея противоречила сложившимся представлениям классической физики, где процессы и величины, их характеризующие, изменяются непрерывно. Эту непонятную и поэтому мало кем принятую идею в 1905 г. А. Эйнштейн использовал для объяснения законов фотоэффекта. Он пошел далее М. Планка и утверждал: свет не только испускается, но и распространяется и поглощается квантами.

Иначе говоря, поток монохроматического света, несущий энергию Е, представляет собой поток n частиц (названных позднее фотонами), каждая из которых обладает энергией hv:

.

Энергия фотона пропорциональна частоте света. Чем больше частота (меньше длина волны) излучения, тем большую энергию несет каждый его фотон.

Далее Эйнштейн предположил: каждый фотон взаимодействует не со всем веществом, на которое падает свет, и даже не с атомом в целом, а с отдельным электроном атома. Фотон отдает свою энергию электрону, а электрон, получив энергию, вырывается из металла с определенной кинетической энергией. На основе закона сохранения энергии можно записать следующее уравнение для элементарного акта взаимодействия фотона с электроном:

,

где hv — энергия фотона, A – работа выхода электрона из металла,

— максимальная кинетическая энергия, которую может приобрести электрон.

После этого объясняют экспериментальные законы фотоэффекта с точки зрения квантовой теории. Сила фототока насыщения пропорциональна числу электронов, вылетающих за 1 с с освещаемой поверхности; интенсивность света — числу ежесекундно падающих фотонов. Так как каждый фотон может выбить с поверхности металла лишь один электрон, то естественно, что сила фототока насыщения (число вырванных электронов) будет пропорциональна интенсивности света (числу падающих фотонов).

Важно при этом подчеркнуть, что наблюдают прямую пропорциональность, а не равенство, так как часть падающих на металл фотонов отражается, а из поглощенных фотонов не все вырывают из металла свободные электроны. Энергия части поглощенных фотонов превращается во внутреннюю энергию металла. Поэтому отношение числа электронов n к числу падающих на металл фотонов nф значительно меньше единицы (для чистых металлов примерно в 1000 раз).

Далее объясняют, почему наибольшая кинетическая энергия фотоэлектронов зависит от частоты падающего света, а не от его интенсивности (второй закон фотоэффекта). Из уравнения Эйнштейна следует:

Так как для данного вещества работа выхода постоянна (А =const), то наибольшая кинетическая энергия фотоэлектронов пропорциональна частоте падающего света. Анализируют случай, когда энергия светового кванта равна работе выхода А:

или

Следовательно, вся энергия фотона идет на совершение работы выхода и скорость электронов равна нулю. Минимальная (граничная) частота фотоэффекта v0 равна А/h, а максимальная длина волны . При условии v < v0 и λ > λ0 фотоэффекта нет. Это длинноволновая (красная) граница фотоэффекта. Ее значение зависит только от работы выхода, т. е. от химической природы металла, и может лежать на любом участке оптического диапазона. Для каждого вещества есть определенная длинноволновая граница фотоэффекта (третий закон фотоэффекта).

Таким образом, уравнение Эйнштейна объясняет все законы внешнего фотоэффекта. Оно позволяет вычислять скорости фотоэлектронов и определять наибольшую длину волны, при которой еще наблюдается явление фотоэффекта для данного вещества, а также вычислить работу выхода для конкретного металла.

После анализа уравнения Эйнштейна можно показать, как была осуществлена экспериментальная проверка этого уравнения. Она состояла в определении постоянной Планка из результатов опыта.

Так как работа выхода для данного вещества — величина постоянная, то кинетическая энергия фотоэлектрона является линейной функцией частоты излучения, падающего на фотоэлемент. Точка В соответствует граничной частоте фотоэффекта, а отрезок ОС — работе выхода А. Измерив задерживающее напряжение и определив работу выхода (зная граничную частоту для данного металла), можно по этим данным найти постоянную Планка

, ,

откуда

, .

Таким образом, тангенс угла наклона прямой к оси частот равен постоянной Планка, т. е.

Для всех металлов этот угол одинаков.

При практическом проведении таких измерений встретились большие трудности. Первые тщательные измерения постоянной Планка этим методом были выполнены в 1915 г. Р. Милликеном. Он получил значение, близкое к тому, какое было уже известно из теории теплового излучения.

Характеристики

Тип файла
Документ
Размер
705,33 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6502
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее