151072 (621561), страница 2

Файл №621561 151072 (Физические величины и их измерения) 2 страница151072 (621561) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Обычно вместо такой круглой единицы площади применяют более удобную квадратную единицу, представляющую собой площадь квадрата со стороной, равной единице длины.

Если бы при установлении круглой единицы площади было принято kS = /4, то она совпала бы с обычной квадратной единицей.

Пример 2. Установление единицы скорости. В качестве определяющего примем уравнение, показывающее, что размер скорости и равномерного движения тем больше, чем больше размер l пройденного пути и чем меньше размер затраченного на этот путь времени Т:

= k (l/T),

где k — коэффициент пропорциональности.

Полагая l = [L], Т = [Т], получаем единицу скорости []=k k [L] [T]-1. Если из соображений удобства положим k = l, то единица скорости будет [] = [L] [T]-1. При [L] = 1 ми [Т] = 1с согласно последней формуле [] = 1 м/с.

Пример 3. Установление единицы ускорения. В качестве определяющего уравнения возьмем определение ускорения как производную скорости по времени: a = d/dT. Полагая d = [], dT = [Т], получаем единицу ускорения: [а] = При [L] = 1 м и [Т] = 1с [а] = 1 м/с2.

Пример 4. Установление единицы силы. Выберем в качестве определяющего уравнение закона всемирного тяготения

f = где m1 и m2 — размеры масс тел;

r – размер расстояния между центрами этих масс;

kf - коэффициент пропорциональности.

Полагая m1 = m2 [М], r = [L], получаем единицу силы

или при kf =1 [f] = [M]2 [L]-2. При [L] = 1 м и [М] = 1 кг согласно последней формуле [f] = 1 кг22.

Выбирая в качестве определяющего уравнение второго закона Ньютона f = = kf ma, получаем аналогично предыдущему единицу силы в виде [f] = kf [M] * [а] = kf [М] [L] [Т]-2, или в виде [f] = [М] [L] [Т]-2. При [М] = 1 кг, [L] = 1 м и [Т] = 1с согласно последней формуле [f] = 1 кг м/с2.

Обе полученные единицы силы равноправны, однако вторая широко распространена, а первая употребляется редко (преимущественно в астрономии).

Из рассмотренных примеров видно, что при выбранных основных ФВ — длине L, массе М и времени Т, производная единица [х] некоторой ФВ х находится через единицы [L], [М] и [Т] по формуле:

[x] = kx [L]pL [M]pM [T]pT,

где kx – произвольно выбираемый коэффициент пропорциональности;

pL, рМ и рТ – положительные или отрицательные числа.

Эти числа показывают, как изменяется производная единица ФВ с изменением основной. Например, с изменением основной единицы [L] в q раз производная единица [х] изменится в qpL раз. Так как kx при этом на изменение [х] не влияет, то характер изменения единицы [х] с изменением единиц [L], [М] и [Т] выражают обычно при помощи формул размерности, в которых kx = 1. В рассматриваемом случае формула размерности имеет вид

dim x = LpL MpL TpT,

где правая часть называется размерностью единицы ФВ; левая часть – обозначение этой размерности (dimension);

pL, рМ и рТ – показатели размерности.

Из формулы размерности видно так же, как изменяется размер производной ФВ с изменением размера основной ФВ при выбранном определяющем уравнении. Правую часть этой формулы называют и размерностью ФВ.

Рассмотрим общий случай, когда имеется несколько основных ФВ А, В, С, D, ..., единицы которых [А], [В], [С], [D], ..... Тогда, очевидно, установление производной единицы ФВ х сведется к выбору какого-либо определяющего уравнения, связывающего х с другими (основными и производными) ФВ, к приведению этого уравнения к виду:

х = kx ApA BpB CpC DpD…,

где рA, рB, рC, pD, ... — показатели размерности, и к замене основных ФВ их единицами:

[x] = kx [A]pA [B]pB [C]pC [D]pD

Формула размерности в этом случае будет иметь вид:

dim x = ApA BpB CpC DpD

Известно, что производная единица ФВ х обладает размерностью рА относительно основной единицы ФВ А, размерностью рB относительно основной единицы ФВ В и т.д. (или что производная ФВ обладает размерностью рА относительно основной ФВ А, размерностью рB относительно основной ФВ В и т. д.). Так, рассмотрев размерность скорости (пример 2) LT-1, или L1M0T-1, можно сказать, что скорость обладает размерностью 1 относительно длины, нулевой размерностью относительно массы и размерностью -1 относительно времени (единица скорости обладает размерностью 1 относительно единицы длины и т.д.).

Если рА = рB = рC = рD = … = 0, то производная ФВ х называется безразмерной ФВ, а ее единица [х] – безразмерной единицей ФВ1.

Примером безразмерной производной единицы ФВ может служить единица [φ] плоского угла φ – радиан. При установлении этой единицы в качестве определяющего принято уравнение φ = = kφ (l/r), показывающее, что размер угла φ тем больше, чем больше размер длины l, стягивающей его дуги и чем меньше размер длины r радиуса этой дуги. В уравнении принято kφ = 1, l = [L], r = [L]. Следовательно [φ] = = [L]0 и dim φ = L0.

Если при установлении производной единицы ФВ в ее выражении через основные единицы ФВ полагают kx = 1, то она называется когерентной производной единицей ФВ. Система единиц ФВ, все производные единицы которой когерентны, называется когерентной системой единиц ФВ.

Размерности производных единиц ФВ х, у и z связаны между собой следующим образом. Если z = k1xy, то

dim z — dim х * dim у. (1.2)

Если z = k2 , то

dim z — dim х/dim у. (1.3)

Если z = k3xn, то

dim z — (dim х)n. (1.4)

Равенствами (1.2) и (1.3) мы пользовались при установлении единиц ускорения и силы, а равенство (1.4) – следствие равенства (1.2).

Формулы размерности удается написать лишь для таких ФВ, при измерении которых удовлетворяется условие однозначности измерений. Размерности различных ФВ могут совпадать (например, момента силы и работы), а размерности одной и той же ФВ в разных системах единиц ФВ могут различаться (см. пример 4, где разные определяющие уравнения привели нас к разным размерностям единиц силы и, следовательно, к разным размерностям силы). Следовательно размерности не дают полного представления о ФВ. Однако несовпадение размерностей левой и правой частей любой формулы или любого уравнения свидетельствует об ошибочности этой формулы или этого уравнения. Кроме того, понятие размерности облегчает решение многих задач. Если предварительно известно, какие ФВ участвуют в исследуемом процессе, то можно с помощью анализа размерностей установить характер зависимости между размерами этих ФВ. При этом решение задачи часто оказывается гораздо более простым, чем если бы оно велось другими способами.

Существенно, что при математической формулировке физических явлений под символами ФВ подразумевают не сами ФВ и не их размеры, а значения ФВ, т. е. именованные числа. Например, в уравнении f = kf ma, выражающем второй закон Ньютона, под символами т и а подразумеваются не сами ФВ (масса и ускорение) и не размеры массы и ускорения, которые невозможно умножить друг на друга, а значения массы и ускорения, т. е. именованные числа, отражающие размеры массы и ускорения, и для которых операция умножения имеет смысл.

1.4 Системы единиц

Первой системой единиц ФВ по существу были упоминавшиеся выше метрические единицы ФВ. Однако только, в 1832 г. К. Гаусс предложил впредь строить системы единиц ФВ как совокупности основных и производных единиц. В построенной им системе основными единицами ФВ были миллиметр, миллиграмм и секунда.

В дальнейшем появились другие системы единиц ФВ, также-базирующиеся на метрических единицах ФВ, но с различными основными единицами. Наиболее известные из этих систем следующие.

Система СГС (1881 г.). Основные единицы ФВ – сантиметр, грамм, секунда. Система получила большое распространение в физике. В дальнейшем были созданы некоторые разновидности этой системы для электрических и магнитных ФВ.

Система МТС (1919 г.). Основные единицы ФВ – метр, тонна (1000 кг), секунда. Большого распространения эта система не получила.

Система МКГСС (конец XIX в). Основные единицы ФВ – метр, килограмм-сила, секунда. Эта система получила большое распространение в технике.

Система МКСA (1901 г.). Иногда ее называют системой Джорджи (по имени ее создателя). Основные единицы ФВ – метр, килограмм, секунда и ампер. Эта система в настоящее время вошла составной частью в новую международную систему единиц ФВ.

Все основные и производные единицы любой системы единиц ФВ называются системными единицами ФВ (по отношению к данной системе). Наряду с системными существуют и так называемые внесистемные единицы, т. е. такие, которые не входят в систему единиц ФВ. Все внесистемные единицы ФВ можно разделить на две группы: 1) не входящие ни в одну из известных систем, например: единица длины – икс-единица, единица давления – миллиметр ртутного столба, единица энергии – электрон-вольт; 2) являющиеся внесистемными лишь по отношению к некоторым системам, например: единица длины – сантиметр – внесистемная для всех систем, кроме СГС; единица массы – тонна – внесистемная для всех систем, кроме МТС; единица электрической емкости – сантиметр – внесистемная для всех систем, кроме СГСЭ2.

Наличие разных систем единиц ФВ, а также большого числа внесистемных единиц ФВ создает неудобства, связанные с расчетами, необходимыми при переходе от одних единиц ФВ к другим. В связи с ростом научно-технических связей между странами стала необходимой унификация единиц ФВ. В результате была создана новая Международная система единиц ФВ.

Международная система единиц. В 1960 г. XI Генеральная конференция по мерам и весам утвердила Международную систему единиц ФВ SI3.

В СССР и в странах — членах СЭВ — SI введена в стандарт СЭВ СТСЭВ 1052 – 78 «Метрология. Единицы физических величин» Сведения об основных единицах ФВ SI приведены в табл. 1.

Две, по существу производные, единицы ФВ SI: единица плоского угла – радиан (русское обозначение рад, международное – rad) и единица телесного угла — стерадиан (русское обозначение ср, международное – sr) – официально производными не считаются и называются дополнительными единицами ФВ SI. Причина их обособления в том, что они установлены по определяющим уравнениям = l/r и = S/R2, где - плоский угол, вершина которого совпадает с центром дуги длины l и радиуса r; - телесный угол, вершина которого совпадает с центром сферы радиуса R, и который вырезает на поверхности сферы площадь S. Единицы

[] = 0 и [] =

безразмерны, а следовательно, не зависят от выбора основных единиц ФВ системы.

Производные единицы ФВ SI образуются из основных и дополнительных по правилам образования когерентных единиц ФВ.

Основные единицы физических величин SI Таблица 1.

Например: угловое ускорение – радиан на секунду в квадрате (рад/с2), напряженность магнитного поля – ампер на метр (А/м), яркость — кандела на квадратный метр (кд/м2).

Единицы ФВ SI, имеющие специальные наименования, приведены в табл. 2.

Международная система имеет следующие преимущества перед другими системами единиц ФВ: универсальна, т. е. охватывает все области физики; когерентна; ее единицы ФВ в большинстве случаев практически удобны и были широко распространены ранее.

Единицы, разрешенные к применению в странах СЭВ. Указанные выше преимущества SI в целом еще не позволяют утверждать, что ее единицы ФВ во всех случаях более приемлемы, чем какие-либо другие. Например, для измерения больших промежутков времени месяц и век могут оказаться более удобными единицами, чем секунда; для измерения больших расстояний световой год и парсек могут, оказаться более удобными единицами чем метр и т. п.

Характеристики

Тип файла
Документ
Размер
1,57 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6643
Авторов
на СтудИзбе
293
Средний доход
с одного платного файла
Обучение Подробнее