150501 (621278), страница 6

Файл №621278 150501 (Органические полупроводники) 6 страница150501 (621278) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Такая зависимость присуща, только плохим полупроводникам и не должна соблюдаться в низкоомных полимерах.

Изучение фотоэлектрических процессов в полимерах наряду с изучением темповой электропроводности дает дополнительную информацию об электронных явлениях в таких системах, гак как световой луч позволяет зондировать определенные свойства электронов.

Многие исследования покачали, что спектры фотопроводимости и спектры фото-эдс обычно имеют большое сходство со спектрами поглощения. Например, на толстых слоях наблюдается уменьшение фотоэлектрической чувствительности в максимуме поглощения: для появления фотопроводимости необходимо наличие развитой поверхности. Носители заряда, по-видимому, образуются на поверхности фоточувствительного материала, куда диффундирует экситон.

Фотопроводимость у фоточувствительных образцов изменяется экспоненциально с ростом температуры:

,(2.8)

где фотопроводимость; — константа для данного образца; — термическая энергия активации проводимости (обычно 0,1—0,3 эв).

Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников.

Зависимость фототока от освещенности выражается формулой:

,(2.9)

где n— коэффициент 9.5—1,0; L —освещенность.

Полиацетилениды меди имеют темповое сопротивление 109—1010) ом·см, которое при освещении монохроматическим светом уменьшается до 10— 108 ом·см с нарастанием фототока до максимального значения за 10—15 сек.

Сухой кислород обратимо уменьшает фотопроводимость на два-три порядка и фото-эдс, в 3 — 5 раза. Аналогично действуют gары воды.

Механизм фотоэффекта сводится к возбуждению макромолекулы поглощенным фоnоном. Возбужденное состояние мигрирует до встречи со структурным или химическим дефектом, на котором происходит образование свободной пары носителей фототока. Электрон задерживается положительно заряженными центрами, а свободные дырки мигрируют по системе макромолекул.

Существенным фактором, определяющим фотоэлектрическую чувствительность вещества, являются потенциальные барьеры на границе между макромолекулами. В связи с ним возрастает роль случайных связей, обусловливающих сшивание макромолекул.

Па полиииах и полиацетиленидах обнаружено явление спектральной сенсибилизации фотоэффекта красителями, такими, как метиленовый голубой, хлорофилл, фталоцианины, родамин и др. Подобно красителям ведет себя иод, следы которого могут увеличивать фотопроводимость.

Полученные результаты показали, что при сенсибилизации фотоэффекта органических полупроводников наблюдаются закономерности, свойственные неорганическим полупроводникам.

Высокая фотоэлектрическая чувствительность полиинов и полиацетиленидов позволила создать на их основе электрофотографические слои, чувствительность которых сравнима с чувствительностью слоев из неорганических полупроводников.



2.8 Практическое применение органических полупроводников

Рассмотрим один из аспектов применения органических полупроводников, а именно, технологию OLED (Organic Light Emitting Diode), уже в названии которой содержатся два кардинальных отличия от LCD технологии — “органический” и “светоизлучающий”.

С начала 1960-х г. микроэлектроника основывается исключительно на неорганических материалах: кремнии, германии, арсенидегаллия, металлических проводниках из алюминия или меди, различных диэлектриках типа того же диоксида кремния.

Тем не менее, все это время не прекращалась исследовательская работа по органическим материалам — полимерам и олигомерам, а также гибридным органическим — неорганическим соединениям по всему спектру параметров: проводимость, полупроводниковые качества, светоизлучение. Не говоря уже о том что органика обладает рядом интересных качеств вроде более мягких требований к температуре окружающей среды, зачастую выдающейся гибкостью и т. д., что открывает перед производителями электронных устройств ряд совершенно новых применений.

В последние годы органические материалы используются даже в производстве центральных процессоров: проводящие органические соединения применяются в упаковке процессоров, для Intel — начиная еще с OLGA (Organic Land Grid Array), и в литографии — в качестве фоторезистивных материалов.

Однако с ростом проблем, встающих сегодня перед традиционной неорганической микроэлектроникой, вероятность того, что производители начнут обращать больше внимания на органику, становится все выше и выше. Пионером в их исследовании стал Eastman Kodak — ученые Чин Тэнг и Стив Ван Слайк еще в 1987 году издали статью “Organic electroluminescent diodes”, описывающую новый класс тонкопленочных устройств на базе органических материалов, обладающих электролюминесцентными качествами, заметно превосходящими все, что было создано в этой области ранее.

Впервые предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается основным вариантом, используемым для создания OLED устройств. Все закрыто стеклом, покрытым со стороны OLED тончайшим слоем оксидa олова индия (indium tin oxid), выступающим в роли анода. Непосредственно к нему прилегает первый органический слой, порядка 750 ангстрем (75 нм) ароматического диамина, выступающего в роли полупроводника “р типа”, следом идет основной, светоизлучающий слой из пленки, состоящей из соединения, принадлежащего к классу fluorescent metal chelate комплексов. Например, hydroxyquinoline aluminium. В роли полупроводника n типа может выступать много органических соединений с труднопроизносимыми на основе все тех же ароматических углеводов. И, наконец, последним слоем является катод, состоящий из смеси магния с серебром с атомным соотношением 10:1. Эта система имеет толщину менее 500 нм, вместе с задней подсветкой, каковой она, помимо всего прочего, сама и является. При прохождении тока напряжением от 2, 5 В базовый слой начинает излучать фотоны, чей поток становится все более интенсивным по мере увеличения силы тока, усиливаясь практически линейно и позволяя при напряжении менее 10 В получить яркость более 1 000 Кд на квадратный метр, что минимум в два раза превышает соответствующий показатель LCD экранов (максимум же — свыше 100 000 Кд на квадратный метр).

Пик интенсивности спектра приходится на 550 нм длину волны, что соответствует зеленому цвету. Естественно, кроме явных плюсов были и минусы. Тут и долговечность, точнее, ее отсутствие — в первоначальных опытах светимость при постоянном напряжении падала вдвое уже после 100 часов непрерывной работы, и проблемы с отдельными участками спектра — в частности, с голубым.

Тем не менее прорыв был очевиден, учитывая, что до этого для получения более менее нормальной светимости требовалось напряжение порядка 100 В. К решению оставшихся проблем присоединилось множество фирм (на сегодняшний день OLED занимаются порядка восьмидесяти компаний и университетов), и большинство из них в той или иной мере уже можно считать решенными. Новые OLED материалы представляют куда более сложные комбинации веществ, чем это было на заре их истории. Новые химические формулы базовых слоев, отдельные обогащающие добавки, отвечающие каждая за свою часть спектра — красную, синюю, зеленую. Основные усилия разработчиков направлены в настоящий момент на улучшение характеристик органических полупроводников. Успехи более чем впечатляют: хотя в синем спектре последние перспективные OLED материалы и остаются наименее долговечными, тем не менее, даже в условиях синей светимости их срок жизни достигает 10 тысяч часов. Красный и зеленый цвета дают до 40 тысяч, универсальный белый — 20 тысяч часов. Уже прилично, учитывая, что для тех же цифровых камер, к примеру, среднее время жизни экрана считается нормальным от 1 000 часов. К тому же в коммерческих продуктах речь, очевидно, будет идти о классической схеме, используемой в LCD, когда экран состоит из сплошных белых OLED излучателей с цветными фильтрами, отвечающими за придание цвета конкретным пикселям.

Ко всему прочему новые основные материалы значительно повышают и физические параметры OLED. В частности, повышая верхнюю планку диапазона рабочих температур более чем до 100 градусов по Цельсию, с прицелом на использование в автомобильной электронике и подобных устройствах.

Как в традиционных CRT экранах, OLED экран представляет собой матрицу, состоящую из комбинаций ячеек трех основных цветов — красного, синего, зеленого.

В зависимости от того, какой цвет от него требуется, регулируется уровень напряжения на каждой из ячеек матрицы, в результате чего смешением трех получившихся оттенков и достигается требуемый результат. В своем развитии OLED экраны начали с пассивных матриц, которые прекрасно подходят, на пример, для экранов автомагнитол или дешевых сотовых телефонов. Такая матрица представляет собой простейший двухмерный массив пикселей в виде пересекающихся строк и колонок. Каждое пересечение является OLED диодом. Что бы подсветить его, управляющие сигналы подаются на соответствующие строку и колонку. Чем больше подано напряжение, тем ярче светимость пикселя. Напряжение требуется достаточно высокое, вдобавок подобная схема не позволяет создавать эффективные экраны, состоящие более чем из миллиона пикселей. Когда у первых ноутбуков курсор мыши, двигающийся по экрану, оставлял за собой длинный, угасающий след — вот это и есть пример пассивной матрицы.

Весьма схожи между собой у LCD и OLED принципы работы активной матрицы. Все тот же двухмерный массив из пересекающихся колонок и линий, но на сей раз каждое из их пересечений представляет собой не только светоизлучающий элемент, жидкокристаллическую ячейку или OLED диод, но и управляющий им транзистор. Управляющий сигнал посылается уже на него, он запоминает, какой уровень светимости от ячейки требуется, и, пока не будет дана другая команда, будет исправно поддерживать этот уровень тока. И напряжение в этом случае требуется куда ниже, и ячейка куда быстрее реагирует на изменение ситуации.

Транзисторы здесь требуются не совсем обычные — они должны лечь еще одним ровным тонким слоем на предыдущие слои. Исходя из этой задачи появился новый класс устройств — тонко пленочные транзисторы — TFT. Делались они из сугубо неорганических материалов, а именно — из того же привычного кремния. Немного другого, разумеется — гидрогенизированного аморфного кремния, за счет своей физической структуры более медленного, чем привычный нам по чипам монокристаллический кремний.

Рассмотрим более подробно свойства, лежащие в основе функционирования OLED дисплеев.

Основой для создания органических материалов особой группы – так называемых проводящих электролюминесцентных полимеров служат высокомолекулярные соединения с чередующимися двойными связями в молекулах. В чистом виде они не являются проводниками заряда, поскольку электроны в них локализованы вследствие участия в образовании сильных химических связей. Для освобождения электронов применяются различные примеси, после добавления, которых и появляется возможность перемещения зарядов (электронов и дырок) вдоль молекулярной цепи.

Таким образом, в основе подобной технологии лежат свойства так называемых сопряженных полимеров. В их молекулах атомы углерода образуют между собой двойные или тройные связи. Каждый атом выбирает партнера-фаворита, чтобы отдавать ему два электрона вместо обычного одного. "Лишний" электрон делится еще с одним соседом-атомом. В результате перекрытия p-орбиталей появляются "свободные" электроны и, как следствие, становится возможным протекание электрического тока вдоль молекулярных цепей. Возникают энергетические зоны валентности и проводимости, разделенные запретной зоной. Так полимеры приобретают свойства полупроводников. Эти материалы обладают теми же свойствами, что и неорганические полупроводники, то есть, способны образовывать p-n–переход и, что особенно важно, при определенных условиях излучать свет. Это позволило создать комбинированные по принципу действия устройства – излучающие диоды.

В исследованиях OLED выделилось два основных направления, одно из которых заложили ученые из Eastman-Kodak. Опубликовав еще в 1987 г. статью Organic Electroluminiscent Diodes, они описали новый класс тонкопленочных устройств на базе органических материалов с электролюминесцентными свойствами, заметно превосходящими все, что было создано в этой области ранее. Предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается одним из основных вариантов, используемых для создания OLED-устройств. При этом технологический процесс использует циклы вакуумного испарения (осаждения). В феврале 1999 г. корпорации Sanyo Electric и Eastman-Kodak образовали альянс для разработки и продвижения на рынке OLED-дисплеев. Уже через несколько месяцев они смогли показать работающий прототип полноцветного активно-матричного дисплея.

Другое направление – Polymer LED (PLED) – было заложено в 1989 г., когда профессор Ричард Френд (Richard Friend) вместе с группой химиков научной лаборатории Кембриджского университета открыл светоизлучающие полимеры LEP (Light Emitting Polymer). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT. Вскоре она нашла инвесторов, и началась разработка первого дисплея, сделанного на основе LEP- или PLED-технологии.

Специалистам из CDT удалось решить ряд проблем, применив, например, специальные методики по производству упорядоченных полимеров, а также использовав новые материалы. Чтобы добиться излучения света, был спроектирован аналог неорганического диода. Он состоял из двух слоев – полифениленвинилена (polyphenylene-vinylene, PPV) и циано-PPV (CN-PPV), размещенных между полупрозрачным электродом (окислы индия и олова), который наносили на подложку стекла, с одной стороны, и металлическим контактом – с другой. Эти материалы – PPV и циано-PPV – являются не только полупроводниками, но и, кроме того, еще и самоизолирующими полимерами. Как показали ученые, CN-PPV хорошо подходит для транспортировки электронов благодаря более низкому положению дна зоны проводимости. Электрические характеристики материалов подобраны так, чтобы электроны из CN-PPV и дырки из PPV собирались вдоль границы контакта слоев, где и происходит их рекомбинация с генерацией фотонов.

На сегодняшний день OLED/PLED-технологиями занимаются несколько десятков компаний и университетов. Новые материалы представляют собой куда более сложные комбинации веществ, чем было возможно на заре этих технологий: новые химические формулы базовых слоев, отдельные обогащающие добавки, отвечающие каждая за свою часть спектра – красную, синюю и зеленую. Ведь как и в традиционных ЭЛТ-дисплеях, OLED-экран представляет собой матрицу, состоящую из комбинаций ячеек трех основных цветов – красного, синего, зеленого. В зависимости от того, какой цвет требуется получить, регулируется уровень напряжения на каждой ячейке матрицы, в результате чего смешением трех образовавшихся оттенков и получается искомый результат.

Характеристики

Тип файла
Документ
Размер
7,76 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6531
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее